90 lines
3.1 KiB
Python
90 lines
3.1 KiB
Python
import torch
|
|
|
|
from vllm.engine.arg_utils import EngineArgs
|
|
from vllm.sequence import ExecuteModelRequest
|
|
from vllm.utils import get_distributed_init_method, get_ip, get_open_port
|
|
from vllm.worker.worker import Worker
|
|
|
|
|
|
def test_swap() -> None:
|
|
# Configure the engine.
|
|
engine_args = EngineArgs(model="facebook/opt-125m",
|
|
dtype="half",
|
|
load_format="dummy")
|
|
engine_config = engine_args.create_engine_config()
|
|
engine_config.cache_config.num_gpu_blocks = 1000
|
|
engine_config.cache_config.num_cpu_blocks = 1000
|
|
|
|
# Create the worker.
|
|
distributed_init_method = get_distributed_init_method(
|
|
get_ip(), get_open_port())
|
|
worker = Worker(
|
|
model_config=engine_config.model_config,
|
|
parallel_config=engine_config.parallel_config,
|
|
scheduler_config=engine_config.scheduler_config,
|
|
device_config=engine_config.device_config,
|
|
cache_config=engine_config.cache_config,
|
|
load_config=engine_config.load_config,
|
|
local_rank=0,
|
|
rank=0,
|
|
distributed_init_method=distributed_init_method,
|
|
is_driver_worker=True,
|
|
)
|
|
|
|
# Initialize the worker.
|
|
worker.init_device()
|
|
worker.load_model()
|
|
worker.initialize_cache(
|
|
num_gpu_blocks=engine_config.cache_config.num_gpu_blocks,
|
|
num_cpu_blocks=engine_config.cache_config.num_cpu_blocks)
|
|
|
|
# Randomly initialize the cache.
|
|
gpu_cache = worker.cache_engine.gpu_cache
|
|
cpu_cache = worker.cache_engine.cpu_cache
|
|
num_layers = len(gpu_cache)
|
|
for i in range(num_layers):
|
|
gpu_key_cache, gpu_value_cache = gpu_cache[i]
|
|
gpu_key_cache.random_()
|
|
gpu_value_cache.random_()
|
|
cpu_key_cache, cpu_value_cache = cpu_cache[i]
|
|
cpu_key_cache.random_()
|
|
cpu_value_cache.random_()
|
|
|
|
allclose = lambda a, b: torch.allclose(
|
|
a.cuda(), b.cuda(), rtol=0.0, atol=0.0)
|
|
|
|
# Test swap out.
|
|
blocks_to_swap_out = [(3, 72), (56, 35), (84, 34)]
|
|
execute_model_req = ExecuteModelRequest(
|
|
seq_group_metadata_list=[],
|
|
blocks_to_swap_in=[],
|
|
blocks_to_swap_out=blocks_to_swap_out,
|
|
blocks_to_copy=[],
|
|
)
|
|
worker.execute_model(execute_model_req=execute_model_req)
|
|
|
|
for i in range(num_layers):
|
|
gpu_key_cache, gpu_value_cache = gpu_cache[i]
|
|
cpu_key_cache, cpu_value_cache = cpu_cache[i]
|
|
for src, dst in blocks_to_swap_out:
|
|
assert allclose(gpu_key_cache[src], cpu_key_cache[dst])
|
|
assert allclose(gpu_value_cache[src], cpu_value_cache[dst])
|
|
|
|
# Test swap in.
|
|
execute_model_req.blocks_to_swap_out = []
|
|
execute_model_req.blocks_to_swap_in = [
|
|
(19, 45),
|
|
(67, 23),
|
|
(12, 78),
|
|
(40, 99),
|
|
(1, 71),
|
|
]
|
|
worker.execute_model(execute_model_req=execute_model_req)
|
|
|
|
for i in range(num_layers):
|
|
gpu_key_cache, gpu_value_cache = gpu_cache[i]
|
|
cpu_key_cache, cpu_value_cache = cpu_cache[i]
|
|
for src, dst in execute_model_req.blocks_to_swap_in:
|
|
assert allclose(gpu_key_cache[dst], cpu_key_cache[src])
|
|
assert allclose(gpu_value_cache[dst], cpu_value_cache[src])
|