Alex Brooks 1cfde82ffd
[Model] Add Support for Multimodal Granite Models (#10291)
Signed-off-by: Alex-Brooks <Alex.Brooks@ibm.com>
Co-authored-by: Cyrus Leung <cyrus.tl.leung@gmail.com>
2024-11-21 10:46:20 +00:00

666 lines
24 KiB
Python

"""Implementation of SiglipVisionModel intended to be only used
within a vision language model."""
import math
from typing import Iterable, List, Optional, Set, Tuple, Union
import numpy as np
import torch
import torch.nn.functional as F
from PIL import Image
from torch import nn
from transformers import SiglipVisionConfig
from vllm.attention.selector import _Backend
from vllm.config import ModelConfig
from vllm.distributed import divide, get_tensor_model_parallel_world_size
from vllm.inputs import DecoderOnlyInputs, token_inputs
from vllm.model_executor.layers.activation import get_act_fn
from vllm.model_executor.layers.linear import (ColumnParallelLinear,
QKVParallelLinear,
RowParallelLinear)
from vllm.model_executor.layers.quantization import QuantizationConfig
from vllm.model_executor.layers.vocab_parallel_embedding import (
VocabParallelEmbedding)
from vllm.model_executor.model_loader.weight_utils import default_weight_loader
from vllm.multimodal.utils import (cached_get_tokenizer,
consecutive_placeholder_ranges,
repeat_and_pad_placeholder_tokens,
resolve_visual_encoder_outputs)
from vllm.sequence import SequenceData
from .utils import get_vit_attn_backend
def get_siglip_patch_grid_length(*, image_size: int, patch_size: int) -> int:
# Since interpolation is applied, the image size need not be divisible
# assert image_size % patch_size == 0
return image_size // patch_size
def get_siglip_num_patches(*, image_size: int, patch_size: int) -> int:
grid_length = get_siglip_patch_grid_length(image_size=image_size,
patch_size=patch_size)
return grid_length * grid_length
def get_siglip_image_feature_size(hf_config: SiglipVisionConfig) -> int:
return get_siglip_num_patches(image_size=hf_config.image_size,
patch_size=hf_config.patch_size)
def get_max_siglip_image_tokens(hf_config: SiglipVisionConfig) -> int:
return get_siglip_image_feature_size(hf_config)
def dummy_seq_data_for_siglip(
hf_config: SiglipVisionConfig,
seq_len: int,
num_images: int,
*,
image_token_id: int,
image_feature_size_override: Optional[int] = None,
mm_key: str = "image",
):
if image_feature_size_override is None:
image_feature_size = get_siglip_image_feature_size(hf_config)
else:
image_feature_size = image_feature_size_override
return SequenceData.from_prompt_token_counts(
(image_token_id, image_feature_size * num_images),
(0, seq_len - image_feature_size * num_images),
), {
mm_key:
consecutive_placeholder_ranges(num_items=num_images,
item_size=image_feature_size)
}
def dummy_image_for_siglip(
hf_config: SiglipVisionConfig,
num_images: int,
*,
image_width_override: Optional[int] = None,
image_height_override: Optional[int] = None,
):
width = height = hf_config.image_size
if image_width_override is not None:
width = image_width_override
if image_height_override is not None:
height = image_height_override
image = Image.new("RGB", (width, height), color=0)
return {"image": image if num_images == 1 else [image] * num_images}
def dummy_video_for_siglip(
hf_config: SiglipVisionConfig,
num_frames: int,
num_videos: int = 1,
*,
image_width_override: Optional[int] = None,
image_height_override: Optional[int] = None,
):
pil_frame = dummy_image_for_siglip(
hf_config,
num_images=1,
image_width_override=image_width_override,
image_height_override=image_height_override)
np_frame = np.array(pil_frame["image"])
mm_data_per_video = np.repeat([np_frame], num_frames, axis=0)
video_data = [mm_data_per_video] * num_videos
mm_data = {"video": video_data}
return mm_data
def input_processor_for_siglip(
model_config: ModelConfig,
hf_config: SiglipVisionConfig,
inputs: DecoderOnlyInputs,
*,
image_token_id: int,
image_feature_size_override: Optional[Union[int, List[int]]] = None,
):
multi_modal_data = inputs.get("multi_modal_data")
if multi_modal_data is None or "image" not in multi_modal_data:
return inputs
if "multi_modal_placeholders" in inputs and "image" in inputs[
"multi_modal_placeholders"]:
# The inputs already have placeholders.
return inputs
tokenizer = cached_get_tokenizer(model_config.tokenizer)
if image_feature_size_override is None:
image_data = multi_modal_data["image"]
if isinstance(image_data, Image.Image):
image_feature_size = get_siglip_image_feature_size(hf_config)
elif isinstance(image_data, torch.Tensor):
num_images, image_feature_size, hidden_size = image_data.shape
else:
raise TypeError(f"Invalid image type: {type(image_data)}")
else:
image_feature_size = image_feature_size_override
new_prompt, new_token_ids, ranges = repeat_and_pad_placeholder_tokens(
tokenizer,
inputs.get("prompt"),
inputs["prompt_token_ids"],
placeholder_token_id=image_token_id,
repeat_count=image_feature_size,
)
# NOTE: Create a defensive copy of the original inputs
return token_inputs(prompt_token_ids=new_token_ids,
prompt=new_prompt,
multi_modal_data=multi_modal_data,
multi_modal_placeholders={"image": ranges})
# Adapted from https://github.com/huggingface/transformers/blob/v4.43.3/src/transformers/models/siglip/modeling_siglip.py#L249 # noqa
class SiglipVisionEmbeddings(nn.Module):
def __init__(self, config: SiglipVisionConfig):
super().__init__()
self.config = config
self.embed_dim = config.hidden_size
self.image_size = config.image_size
self.patch_size = config.patch_size
self.patch_embedding = nn.Conv2d(
in_channels=config.num_channels,
out_channels=self.embed_dim,
kernel_size=self.patch_size,
stride=self.patch_size,
padding="valid",
)
self.num_patches = (self.image_size // self.patch_size)**2
self.num_positions = self.num_patches
self.position_embedding = VocabParallelEmbedding(
self.num_positions, self.embed_dim)
self.register_buffer(
"position_ids",
torch.arange(self.num_positions, dtype=torch.int64).expand(
(1, -1)),
persistent=False,
)
def interpolate_pos_encoding(self, embeddings: torch.Tensor, height: int,
width: int) -> torch.Tensor:
"""
This method is an adapted method for SigLIP (due to SigLIP not having
class embedding unlike other ViTs) that allows the model to interpolate
the pre-trained position encodings such that it can be usable on higher
resolution images.
Source:
https://github.com/facebookresearch/dino/blob/de9ee3df6cf39fac952ab558447af1fa1365362a/vision_transformer.py#L174
"""
position_embeddings = self.position_embedding.weight.unsqueeze(0)
num_patches = embeddings.shape[1]
num_positions = position_embeddings.shape[1]
if num_patches == num_positions and height == width:
return position_embeddings
dim = embeddings.shape[-1]
height = height // self.patch_size
width = width // self.patch_size
# we add a small number to avoid floating point error
# in the interpolation
# see discussion at https://github.com/facebookresearch/dino/issues/8
height, width = height + 0.1, width + 0.1
patch_pos_embed = position_embeddings.reshape(
1, int(math.sqrt(num_positions)), int(math.sqrt(num_positions)),
dim)
patch_pos_embed = patch_pos_embed.permute(0, 3, 1, 2)
patch_pos_embed = nn.functional.interpolate(
patch_pos_embed,
scale_factor=(
height / math.sqrt(num_positions),
width / math.sqrt(num_positions),
),
mode="bicubic",
align_corners=False,
)
if (int(height) != patch_pos_embed.shape[-2]
or int(width) != patch_pos_embed.shape[-1]):
raise ValueError("Width or height does not match with "
"the interpolated position embeddings")
patch_pos_embed = patch_pos_embed.permute(0, 2, 3, 1).view(1, -1, dim)
return patch_pos_embed
def forward(self,
pixel_values: torch.Tensor,
interpolate_pos_encoding: bool = False) -> torch.Tensor:
_, _, height, width = pixel_values.shape
target_dtype = self.patch_embedding.weight.dtype
patch_embeds = self.patch_embedding(pixel_values.to(
dtype=target_dtype)) # shape = [*, width, grid, grid]
embeddings = patch_embeds.flatten(2).transpose(1, 2)
if interpolate_pos_encoding:
embeddings = embeddings + self.interpolate_pos_encoding(
embeddings, height, width)
else:
embeddings = embeddings + self.position_embedding(
self.position_ids)
return embeddings
class SiglipAttention(nn.Module):
def __init__(
self,
config: SiglipVisionConfig,
quant_config: Optional[QuantizationConfig] = None,
prefix: str = "",
) -> None:
super().__init__()
self.config = config
self.embed_dim = config.hidden_size
self.num_heads = config.num_attention_heads
self.head_dim = self.embed_dim // self.num_heads
if self.head_dim * self.num_heads != self.embed_dim:
raise ValueError(f"embed_dim must be divisible by num_heads (got "
"`embed_dim`: {self.embed_dim} and `num_heads`:"
f" {self.num_heads}).")
self.scale = self.head_dim**-0.5
self.dropout = config.attention_dropout
self.qkv_proj = QKVParallelLinear(
hidden_size=self.embed_dim,
head_size=self.head_dim,
total_num_heads=self.num_heads,
quant_config=quant_config,
prefix=f"{prefix}.qkv_proj",
)
self.out_proj = RowParallelLinear(
input_size=self.embed_dim,
output_size=self.embed_dim,
quant_config=quant_config,
prefix=f"{prefix}.out_proj",
)
self.tp_size = get_tensor_model_parallel_world_size()
self.num_heads_per_partition = divide(self.num_heads, self.tp_size)
self.attn_backend = get_vit_attn_backend(support_fa=False)
if self.attn_backend not in {_Backend.TORCH_SDPA, _Backend.XFORMERS}:
raise RuntimeError(
f"SIGLIP does not support {self.attn_backend} backend now.")
def forward(
self,
hidden_states: torch.Tensor,
) -> torch.Tensor:
"""Input shape: Batch x Time x Channel"""
batch_size, q_len, _ = hidden_states.size()
qkv_states, _ = self.qkv_proj(hidden_states)
query_states, key_states, value_states = qkv_states.chunk(3, dim=-1)
query_states = query_states.view(batch_size, q_len,
self.num_heads_per_partition,
self.head_dim)
key_states = key_states.view(batch_size, q_len,
self.num_heads_per_partition,
self.head_dim)
value_states = value_states.view(batch_size, q_len,
self.num_heads_per_partition,
self.head_dim)
if self.attn_backend == _Backend.XFORMERS:
from xformers import ops as xops
out = xops.memory_efficient_attention_forward(query_states,
key_states,
value_states,
p=self.dropout,
scale=self.scale)
elif self.attn_backend == _Backend.TORCH_SDPA:
query_states, key_states, value_states = (x.transpose(1, 2)
for x in (query_states,
key_states,
value_states))
out = F.scaled_dot_product_attention(query_states,
key_states,
value_states,
dropout_p=self.dropout,
scale=self.scale)
out = out.transpose(1, 2)
out = out.view(batch_size, q_len, -1)
attn_output, _ = self.out_proj(out)
return attn_output, None
class SiglipMLP(nn.Module):
def __init__(
self,
config: SiglipVisionConfig,
quant_config: Optional[QuantizationConfig] = None,
prefix: str = "",
) -> None:
super().__init__()
self.config = config
self.activation_fn = get_act_fn(config.hidden_act)
# For quantization, we require the hidden size to be a multiple of 64
quantizable = (config.hidden_size % 64 == 0
and config.intermediate_size % 64 == 0)
self.fc1 = ColumnParallelLinear(
config.hidden_size,
config.intermediate_size,
quant_config=quant_config if quantizable else None,
prefix=f"{prefix}.fc1",
)
self.fc2 = RowParallelLinear(
config.intermediate_size,
config.hidden_size,
quant_config=quant_config if quantizable else None,
prefix=f"{prefix}.fc2",
)
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
hidden_states, _ = self.fc1(hidden_states)
hidden_states = self.activation_fn(hidden_states)
hidden_states, _ = self.fc2(hidden_states)
return hidden_states
class SiglipEncoderLayer(nn.Module):
def __init__(
self,
config: SiglipVisionConfig,
quant_config: Optional[QuantizationConfig] = None,
prefix: str = "",
) -> None:
super().__init__()
self.embed_dim = config.hidden_size
self.self_attn = SiglipAttention(
config,
quant_config=quant_config,
prefix=f"{prefix}.self_attn",
)
self.layer_norm1 = nn.LayerNorm(self.embed_dim,
eps=config.layer_norm_eps)
self.mlp = SiglipMLP(
config,
quant_config=quant_config,
prefix=f"{prefix}.mlp",
)
self.layer_norm2 = nn.LayerNorm(self.embed_dim,
eps=config.layer_norm_eps)
def forward(
self,
hidden_states: torch.Tensor,
) -> Tuple[torch.Tensor, None]:
residual = hidden_states
hidden_states = self.layer_norm1(hidden_states)
hidden_states, _ = self.self_attn(hidden_states=hidden_states)
hidden_states = residual + hidden_states
residual = hidden_states
hidden_states = self.layer_norm2(hidden_states)
hidden_states = self.mlp(hidden_states)
hidden_states = residual + hidden_states
return hidden_states, None
class SiglipEncoder(nn.Module):
def __init__(
self,
config: SiglipVisionConfig,
quant_config: Optional[QuantizationConfig] = None,
num_hidden_layers_override: Optional[int] = None,
prefix: str = "",
) -> None:
super().__init__()
self.config = config
if num_hidden_layers_override is None:
num_hidden_layers = config.num_hidden_layers
else:
num_hidden_layers = num_hidden_layers_override
self.layers = nn.ModuleList([
SiglipEncoderLayer(config,
quant_config=quant_config,
prefix=f"{prefix}.layers.{layer_idx}")
for layer_idx in range(num_hidden_layers)
])
def forward(
self,
inputs_embeds: torch.Tensor,
return_all_hidden_states: bool,
) -> Union[torch.Tensor, list[torch.Tensor]]:
hidden_states_pool = []
hidden_states = inputs_embeds
for encoder_layer in self.layers:
hidden_states, _ = encoder_layer(hidden_states)
if return_all_hidden_states:
hidden_states_pool.append(hidden_states)
# If we have multiple feature sample layers, we return all hidden
# states in order and grab the ones we need by index.
if return_all_hidden_states:
return hidden_states_pool
return hidden_states
class SiglipMultiheadAttentionPoolingHead(nn.Module):
"""Multihead Attention Pooling."""
def __init__(
self,
config: SiglipVisionConfig,
quant_config: Optional[QuantizationConfig] = None,
prefix: str = "",
) -> None:
super().__init__()
self.probe = nn.Parameter(torch.randn(1, 1, config.hidden_size))
# TODO(ChristopherCho): Implement vLLM version of MultiheadAttention
self.attention = torch.nn.MultiheadAttention(
config.hidden_size, config.num_attention_heads, batch_first=True)
self.layernorm = nn.LayerNorm(config.hidden_size,
eps=config.layer_norm_eps)
self.mlp = SiglipMLP(config=config,
quant_config=quant_config,
prefix=f"{prefix}.mlp")
def forward(self, hidden_state: torch.Tensor) -> torch.Tensor:
batch_size = hidden_state.shape[0]
probe = self.probe.repeat(batch_size, 1, 1)
hidden_state = self.attention(probe, hidden_state, hidden_state)[0]
residual = hidden_state
hidden_state = self.layernorm(hidden_state)
hidden_state = residual + self.mlp(hidden_state)
return hidden_state[:, 0]
class SiglipVisionTransformer(nn.Module):
def __init__(
self,
config: SiglipVisionConfig,
quant_config: Optional[QuantizationConfig] = None,
*,
num_hidden_layers_override: Optional[int] = None,
require_post_norm: Optional[bool] = None,
prefix: str = "",
) -> None:
super().__init__()
self.config = config
embed_dim = config.hidden_size
self.embeddings = SiglipVisionEmbeddings(config)
self.encoder = SiglipEncoder(
config,
quant_config=quant_config,
num_hidden_layers_override=num_hidden_layers_override,
prefix=f"{prefix}.encoder",
)
num_hidden_layers = config.num_hidden_layers
if len(self.encoder.layers) > config.num_hidden_layers:
raise ValueError(
f"The original encoder only has {num_hidden_layers} "
f"layers, but you requested {len(self.encoder.layers)} layers."
)
# If possible, skip post_layernorm to conserve memory
if require_post_norm is None:
require_post_norm = len(self.encoder.layers) == num_hidden_layers
if require_post_norm:
self.post_layernorm = nn.LayerNorm(embed_dim,
eps=config.layer_norm_eps)
else:
self.post_layernorm = None
self.use_head = (True if not hasattr(config, "vision_use_head") else
config.vision_use_head)
if self.use_head:
self.head = SiglipMultiheadAttentionPoolingHead(
config=config,
quant_config=quant_config,
prefix=f"{prefix}.head",
)
def forward(
self,
pixel_values: torch.Tensor,
interpolate_pos_encoding: bool = True,
feature_sample_layers: Optional[list[int]] = None,
) -> torch.Tensor:
hidden_states = self.embeddings(
pixel_values,
interpolate_pos_encoding=interpolate_pos_encoding,
)
return_all_hidden_states = feature_sample_layers is not None
# Produces either the last layer output or all of the hidden states,
# depending on if we have feature_sample_layers or not
encoder_outputs = self.encoder(
inputs_embeds=hidden_states,
return_all_hidden_states=return_all_hidden_states,
)
# Handle post-norm (if applicable) and stacks feature layers if needed
encoder_outputs = resolve_visual_encoder_outputs(
encoder_outputs, feature_sample_layers, self.post_layernorm,
self.config.num_hidden_layers)
# TODO: add this back when pooled_output is used in inference.
# if self.use_head:
# pooled_output = self.head(encoder_outputs)
return encoder_outputs
class SiglipVisionModel(nn.Module):
config_class = SiglipVisionConfig
main_input_name = "pixel_values"
def __init__(
self,
config: SiglipVisionConfig,
quant_config: Optional[QuantizationConfig] = None,
*,
num_hidden_layers_override: Optional[int] = None,
require_post_norm: Optional[bool] = None,
prefix: str = "",
) -> None:
super().__init__()
self.vision_model = SiglipVisionTransformer(
config,
quant_config,
num_hidden_layers_override=num_hidden_layers_override,
require_post_norm=require_post_norm,
prefix=f"{prefix}.vision_model",
)
def get_input_embeddings(self) -> nn.Module:
return self.vision_model.embeddings.patch_embedding
def forward(
self,
pixel_values: torch.Tensor,
interpolate_pos_encoding: bool = False,
feature_sample_layers: Optional[list[int]] = None,
) -> torch.Tensor:
return self.vision_model(
pixel_values=pixel_values,
interpolate_pos_encoding=interpolate_pos_encoding,
feature_sample_layers=feature_sample_layers,
)
def load_weights(self, weights: Iterable[Tuple[str,
torch.Tensor]]) -> Set[str]:
stacked_params_mapping = [
# (param_name, shard_name, shard_id)
("qkv_proj", "q_proj", "q"),
("qkv_proj", "k_proj", "k"),
("qkv_proj", "v_proj", "v"),
]
params_dict = dict(self.named_parameters())
loaded_params: Set[str] = set()
layer_count = len(self.vision_model.encoder.layers)
for name, loaded_weight in weights:
# post_layernorm is optional in SiglipVisionModel
if (name.startswith("vision_model.post_layernorm")
and self.vision_model.post_layernorm is None):
continue
# omit layers when num_hidden_layers_override is set
if name.startswith("vision_model.encoder.layers"):
layer_idx = int(name.split(".")[3])
if layer_idx >= layer_count:
continue
for (param_name, weight_name, shard_id) in stacked_params_mapping:
if weight_name not in name:
continue
name = name.replace(weight_name, param_name)
param = params_dict[name]
weight_loader = param.weight_loader
weight_loader(param, loaded_weight, shard_id)
break
else:
param = params_dict[name]
weight_loader = getattr(param, "weight_loader",
default_weight_loader)
weight_loader(param, loaded_weight)
loaded_params.add(name)
return loaded_params