vllm/tests/core/utils.py

178 lines
5.9 KiB
Python

import time
from typing import Iterable, Optional, Tuple
from vllm import SamplingParams
from vllm.lora.request import LoRARequest
from vllm.sequence import Logprob, Sequence, SequenceGroup
def create_dummy_prompt(
request_id: str,
prompt_length: int,
block_size: Optional[int] = None,
lora_request: Optional[LoRARequest] = None,
use_beam_search: bool = False,
best_of: int = 1,
) -> Tuple[Sequence, SequenceGroup]:
if not block_size:
block_size = prompt_length
# Create dummy prompt sequence with tokens 0...block_size-1
# and prompt "0 ... block_size".
prompt_tokens = list(range(prompt_length))
prompt_str = " ".join([str(t) for t in prompt_tokens])
prompt = Sequence(int(request_id),
inputs={
"prompt": prompt_str,
"prompt_token_ids": prompt_tokens,
},
block_size=block_size)
seq_group = SequenceGroup(request_id=request_id,
seqs=[prompt],
arrival_time=time.time(),
sampling_params=SamplingParams(
use_beam_search=use_beam_search,
best_of=best_of),
lora_request=lora_request)
return prompt, seq_group
def create_dummy_prompt_encoder_decoder(
request_id: str,
decoder_prompt_length: int,
encoder_prompt_length: int,
block_size: Optional[int] = None,
lora_request: Optional[LoRARequest] = None,
use_beam_search: bool = False,
best_of: int = 1,
) -> Tuple[Sequence, SequenceGroup]:
if not block_size:
block_size = decoder_prompt_length
# Create dummy prompt sequence with tokens 0...block_size-1
# and prompt "0 ... block_size".
decoder_prompt_tokens = list(range(decoder_prompt_length))
decoder_prompt_str = " ".join([str(t) for t in decoder_prompt_tokens])
decoder_prompt = Sequence(int(request_id),
inputs={
"prompt": decoder_prompt_str,
"prompt_token_ids": decoder_prompt_tokens,
"multi_modal_data": None,
},
block_size=block_size)
encoder_prompt_tokens = list(reversed(list(range(encoder_prompt_length))))
encoder_prompt_str = " ".join([str(t) for t in encoder_prompt_tokens])
encoder_prompt = Sequence(int(request_id),
inputs={
"prompt": encoder_prompt_str,
"prompt_token_ids": encoder_prompt_tokens,
"multi_modal_data": None,
},
block_size=block_size)
seq_group = SequenceGroup(request_id=request_id,
seqs=[decoder_prompt],
sampling_params=SamplingParams(
use_beam_search=use_beam_search,
best_of=best_of),
arrival_time=time.time(),
lora_request=lora_request,
encoder_seq=encoder_prompt)
return decoder_prompt, encoder_prompt, seq_group
def create_seq_group(
seq_prompt_len: int = 1024,
seq_output_lens: Iterable[int] = (128, ),
request_id: str = '0',
seq_id_start: int = 0,
sampling_params: Optional[SamplingParams] = None) -> SequenceGroup:
assert len(seq_output_lens) > 0
if sampling_params is None:
sampling_params = SamplingParams()
prompt_token_ids = [0] * seq_prompt_len
seqs = []
for seq_id_offset, output_len in enumerate(seq_output_lens):
seq = Sequence(
seq_id=seq_id_start + seq_id_offset,
inputs={"prompt_token_ids": prompt_token_ids},
block_size=16,
)
for i in range(output_len):
seq.append_token_id(
token_id=i,
logprobs={i: Logprob(0.0)},
)
seqs.append(seq)
seq_group = SequenceGroup(
request_id=request_id,
seqs=seqs,
sampling_params=sampling_params,
arrival_time=time.time(),
)
return seq_group
def create_seq_group_encoder_decoder(
seq_prompt_len: int = 1024,
seq_output_lens: Iterable[int] = (128, ),
request_id: str = '0',
seq_id_start: int = 0,
sampling_params: Optional[SamplingParams] = None) -> SequenceGroup:
assert len(seq_output_lens) > 0
if sampling_params is None:
sampling_params = SamplingParams()
prompt_token_ids = [0] * seq_prompt_len
seqs = []
for seq_id_offset, output_len in enumerate(seq_output_lens):
seq = Sequence(
seq_id=seq_id_start + seq_id_offset,
inputs={
"prompt": "",
"prompt_token_ids": prompt_token_ids,
"multi_modal_data": None,
},
block_size=16,
)
for i in range(output_len):
seq.append_token_id(
token_id=i,
logprobs={i: Logprob(0.0)},
)
seqs.append(seq)
# Encoder sequence
encoder_seq = Sequence(
seq_id=seq_id_start + len(seq_output_lens),
inputs={
"prompt": "",
"prompt_token_ids": prompt_token_ids,
"multi_modal_data": None,
},
block_size=16,
)
return SequenceGroup(request_id=request_id,
seqs=seqs,
sampling_params=sampling_params,
arrival_time=time.time(),
encoder_seq=encoder_seq)
def round_up_to_next_block(seq_len: int, block_size: int) -> int:
return (seq_len + block_size - 1) // block_size