102 lines
3.7 KiB
Python
102 lines
3.7 KiB
Python
from typing import List, Set, Tuple
|
|
|
|
import torch
|
|
|
|
from vllm.executor.executor_base import ExecutorAsyncBase, ExecutorBase
|
|
from vllm.logger import init_logger
|
|
from vllm.lora.request import LoRARequest
|
|
from vllm.sequence import ExecuteModelRequest, SamplerOutput
|
|
from vllm.utils import (get_distributed_init_method, get_ip, get_open_port,
|
|
make_async)
|
|
|
|
logger = init_logger(__name__)
|
|
|
|
|
|
class TPUExecutor(ExecutorBase):
|
|
|
|
def _init_executor(self) -> None:
|
|
assert not self.scheduler_config.chunked_prefill_enabled, (
|
|
"Chunked prefill is not yet supported for TPU backend")
|
|
assert not self.speculative_config, (
|
|
"Speculative decoding is not yet supported for TPU backend")
|
|
if self.model_config.dtype in (torch.float16, torch.float32):
|
|
logger.warning(
|
|
"The TPU backend currently does not support %s. "
|
|
"Using bfloat16 instead.", self.model_config.dtype)
|
|
self.model_config.dtype = torch.bfloat16
|
|
|
|
# Instantiate the worker and load the model to the device.
|
|
self._init_worker()
|
|
|
|
def _init_worker(self):
|
|
from vllm.worker.tpu_worker import TPUWorker
|
|
|
|
assert self.parallel_config.world_size == 1, (
|
|
"TPUExecutor currently only supports a single TPU chip.")
|
|
distributed_init_method = get_distributed_init_method(
|
|
get_ip(), get_open_port())
|
|
self.driver_worker = TPUWorker(
|
|
self.model_config,
|
|
self.parallel_config,
|
|
self.scheduler_config,
|
|
self.device_config,
|
|
self.cache_config,
|
|
self.load_config,
|
|
self.vision_language_config,
|
|
local_rank=0,
|
|
rank=0,
|
|
distributed_init_method=distributed_init_method,
|
|
)
|
|
self.driver_worker.init_device()
|
|
self.driver_worker.load_model()
|
|
|
|
def initialize_cache(
|
|
self,
|
|
num_gpu_blocks: int,
|
|
num_cpu_blocks: int,
|
|
) -> None:
|
|
"""Initialize the KV cache by invoking the underlying worker."""
|
|
# NOTE: This is logged in the executor because there can be >1 worker
|
|
# with other executors. We could log in the engine level, but work
|
|
# remains to abstract away the device for non-GPU configurations.
|
|
logger.info("# TPU blocks: %d, # CPU blocks: %d", num_gpu_blocks,
|
|
num_cpu_blocks)
|
|
self.driver_worker.initialize_cache(num_gpu_blocks, num_cpu_blocks)
|
|
|
|
def determine_num_available_blocks(self) -> Tuple[int, int]:
|
|
"""Determine the number of available KV blocks by invoking the
|
|
underlying worker.
|
|
"""
|
|
return self.driver_worker.determine_num_available_blocks()
|
|
|
|
def execute_model(
|
|
self,
|
|
execute_model_req: ExecuteModelRequest,
|
|
) -> List[SamplerOutput]:
|
|
output = self.driver_worker.execute_model(execute_model_req)
|
|
return output
|
|
|
|
def add_lora(self, lora_request: LoRARequest) -> bool:
|
|
raise NotImplementedError("LoRA is not implemented for TPU backend.")
|
|
|
|
def remove_lora(self, lora_id: int) -> bool:
|
|
raise NotImplementedError("LoRA is not implemented for TPU backend.")
|
|
|
|
def list_loras(self) -> Set[int]:
|
|
raise NotImplementedError("LoRA is not implemented for TPU backend.")
|
|
|
|
def check_health(self) -> None:
|
|
# TPUExecutor will always be healthy as long as it's running.
|
|
return
|
|
|
|
|
|
class TPUExecutorAsync(TPUExecutor, ExecutorAsyncBase):
|
|
|
|
async def execute_model_async(
|
|
self,
|
|
sexecute_model_req: ExecuteModelRequest,
|
|
) -> SamplerOutput:
|
|
output = await make_async(self.driver_worker.execute_model
|
|
)(sexecute_model_req)
|
|
return output
|