83 lines
2.4 KiB
Python
83 lines
2.4 KiB
Python
# SPDX-License-Identifier: Apache-2.0
|
|
|
|
from typing import List
|
|
|
|
import numpy as np
|
|
import torch
|
|
|
|
from vllm.logger import init_logger
|
|
|
|
logger = init_logger(__name__)
|
|
|
|
|
|
class BlockTable:
|
|
|
|
def __init__(
|
|
self,
|
|
max_num_reqs: int,
|
|
max_model_len: int,
|
|
max_num_blocks_per_req: int,
|
|
pin_memory: bool,
|
|
device: torch.device,
|
|
):
|
|
self.max_num_reqs = max_num_reqs
|
|
self.max_model_len = max_model_len
|
|
self.max_num_blocks_per_req = max_num_blocks_per_req
|
|
self.pin_memory = pin_memory
|
|
self.device = device
|
|
|
|
self.block_table = torch.zeros(
|
|
(max_num_reqs, max_num_blocks_per_req),
|
|
device=self.device,
|
|
dtype=torch.int32,
|
|
)
|
|
self.block_table_cpu = torch.zeros(
|
|
(max_num_reqs, max_num_blocks_per_req),
|
|
device="cpu",
|
|
dtype=torch.int32,
|
|
pin_memory=pin_memory,
|
|
)
|
|
self.block_table_np = self.block_table_cpu.numpy()
|
|
self.num_blocks_per_row = np.zeros(max_num_reqs, dtype=np.int32)
|
|
|
|
def append_row(
|
|
self,
|
|
row_idx: int,
|
|
start: int,
|
|
block_ids: List[int],
|
|
) -> None:
|
|
if not block_ids:
|
|
return
|
|
num_blocks = len(block_ids)
|
|
self.block_table_np[row_idx, start:start + num_blocks] = block_ids
|
|
self.num_blocks_per_row[row_idx] = start + num_blocks
|
|
|
|
def add_row(self, row_idx: int, block_ids: List[int]) -> None:
|
|
self.append_row(row_idx, 0, block_ids)
|
|
|
|
def move_row(self, src: int, tgt: int) -> None:
|
|
num_blocks = self.num_blocks_per_row[src]
|
|
self.block_table_np[tgt, :num_blocks] = self.block_table_np[
|
|
src, :num_blocks]
|
|
self.num_blocks_per_row[tgt] = num_blocks
|
|
|
|
def commit(self, num_reqs: int) -> None:
|
|
self.block_table[:num_reqs].copy_(self.block_table_cpu[:num_reqs],
|
|
non_blocking=True)
|
|
|
|
def clear(self) -> None:
|
|
self.block_table.fill_(0)
|
|
self.block_table_cpu.fill_(0)
|
|
|
|
def get_device_tensor(self) -> torch.Tensor:
|
|
"""Ruturns the device tensor of the block table."""
|
|
return self.block_table
|
|
|
|
def get_cpu_tensor(self) -> torch.Tensor:
|
|
"""Returns the CPU tensor of the block table."""
|
|
return self.block_table_cpu
|
|
|
|
def get_numpy_array(self) -> np.ndarray:
|
|
"""Returns the numpy array of the block table."""
|
|
return self.block_table_np
|