110 lines
4.1 KiB
Python
110 lines
4.1 KiB
Python
# Adapted from
|
|
# https://huggingface.co/Qwen/Qwen2.5-Math-RM-72B/blob/main/modeling_qwen2_rm.py
|
|
# Copyright 2024 Kakao Corp. (Kanana-X Team)
|
|
# Copyright 2024 The Qwen team.
|
|
# Copyright 2023 The vLLM team.
|
|
"""Inference-only Qwen2-Classification model compatible with HF weights."""
|
|
from typing import Iterable, List, Optional, Tuple
|
|
|
|
import torch
|
|
from torch import nn
|
|
|
|
from vllm.attention import AttentionMetadata
|
|
from vllm.config import VllmConfig
|
|
from vllm.model_executor.layers.linear import RowParallelLinear
|
|
from vllm.model_executor.layers.pooler import Pooler, PoolingType
|
|
from vllm.model_executor.models.qwen2 import Qwen2Model
|
|
from vllm.model_executor.pooling_metadata import PoolingMetadata
|
|
from vllm.sequence import IntermediateTensors, PoolerOutput
|
|
|
|
from .utils import AutoWeightsLoader, maybe_prefix
|
|
|
|
|
|
class Qwen2ForSequenceClassification(nn.Module):
|
|
packed_modules_mapping = {
|
|
"qkv_proj": [
|
|
"q_proj",
|
|
"k_proj",
|
|
"v_proj",
|
|
],
|
|
"gate_up_proj": [
|
|
"gate_proj",
|
|
"up_proj",
|
|
],
|
|
}
|
|
|
|
# LoRA specific attributes
|
|
supported_lora_modules = [
|
|
"qkv_proj",
|
|
"o_proj",
|
|
"gate_up_proj",
|
|
"down_proj",
|
|
]
|
|
embedding_modules = {}
|
|
embedding_padding_modules = []
|
|
|
|
def __init__(self, *, vllm_config: VllmConfig, prefix: str = ""):
|
|
super().__init__()
|
|
config = vllm_config.model_config.hf_config
|
|
cache_config = vllm_config.cache_config
|
|
quant_config = vllm_config.quant_config
|
|
lora_config = vllm_config.lora_config
|
|
pooler_config = vllm_config.model_config.pooler_config
|
|
# TODO (@robertgshaw2): see if this can be moved out
|
|
if (cache_config.sliding_window is not None
|
|
and hasattr(config, "max_window_layers")):
|
|
raise ValueError("Sliding window for some but all layers is not "
|
|
"supported. This model uses sliding window "
|
|
"but `max_window_layers` = {} is less than "
|
|
"`num_hidden_layers` = {}. Please open an issue "
|
|
"to discuss this feature.".format(
|
|
config.max_window_layers,
|
|
config.num_hidden_layers,
|
|
))
|
|
|
|
self.config = config
|
|
self.lora_config = lora_config
|
|
|
|
self.quant_config = quant_config
|
|
self.model = Qwen2Model(vllm_config=vllm_config,
|
|
prefix=maybe_prefix(prefix, "model"))
|
|
|
|
# hidden_states from Qwen2Model has been reduced,
|
|
# the input of score layer is not parallelized.
|
|
self.score = RowParallelLinear(config.hidden_size,
|
|
config.num_labels,
|
|
quant_config=quant_config,
|
|
input_is_parallel=False,
|
|
bias=False,
|
|
prefix=maybe_prefix(prefix, "score"))
|
|
self._pooler = Pooler.from_config_with_defaults(
|
|
pooler_config,
|
|
pooling_type=PoolingType.LAST,
|
|
normalize=False,
|
|
softmax=True)
|
|
|
|
def forward(
|
|
self,
|
|
input_ids: torch.Tensor,
|
|
positions: torch.Tensor,
|
|
kv_caches: List[torch.Tensor],
|
|
attn_metadata: AttentionMetadata,
|
|
intermediate_tensors: Optional[IntermediateTensors] = None,
|
|
) -> torch.Tensor:
|
|
hidden_states = self.model(input_ids, positions, kv_caches,
|
|
attn_metadata, intermediate_tensors)
|
|
logits, _ = self.score(hidden_states)
|
|
return logits
|
|
|
|
def pooler(
|
|
self,
|
|
hidden_states: torch.Tensor,
|
|
pooling_metadata: PoolingMetadata,
|
|
) -> Optional[PoolerOutput]:
|
|
return self._pooler(hidden_states, pooling_metadata)
|
|
|
|
def load_weights(self, weights: Iterable[Tuple[str, torch.Tensor]]):
|
|
loader = AutoWeightsLoader(self,
|
|
ignore_unexpected_prefixes=["lm_head."])
|
|
loader.load_weights(weights)
|