Philipp Moritz 12628d3c78
[Kernel] Optimize FP8 support for MoE kernel / Mixtral via static scales (#4343)
Co-authored-by: Woosuk Kwon <woosuk.kwon@berkeley.edu>
2024-04-27 04:49:59 +00:00

127 lines
4.4 KiB
Python

from typing import Any, Dict, List, Optional
import torch
from torch.nn import Module
from torch.nn.parameter import Parameter
from vllm import _custom_ops as ops
from vllm.model_executor.layers.linear import LinearBase, LinearMethodBase
from vllm.model_executor.layers.quantization.base_config import (
QuantizationConfig, QuantizeMethodBase)
from vllm.model_executor.utils import set_weight_attrs
class Fp8Config(QuantizationConfig):
"""Config class for FP8."""
def __init__(
self,
activation_scheme: str = "dynamic",
) -> None:
self.activation_scheme = activation_scheme
@classmethod
def get_name(cls) -> str:
return "fp8"
@classmethod
def get_supported_act_dtypes(cls) -> List[torch.dtype]:
return [torch.bfloat16, torch.half]
@classmethod
def get_min_capability(cls) -> int:
# TODO: PyTorch 2.3.0+ is required to run FP8 on
# SM 89 (e.g. Ada) GPUs. Specifically, this PR has to
# be included: https://github.com/pytorch/pytorch/pull/118881
return 90
@classmethod
def get_config_filenames(cls) -> List[str]:
return []
@classmethod
def from_config(cls, config: Dict[str, Any]) -> "Fp8Config":
activation_scheme = cls.get_from_keys(config, ["activation_scheme"])
return cls(activation_scheme)
def get_quant_method(
self, layer: torch.nn.Module) -> Optional["QuantizeMethodBase"]:
if isinstance(layer, LinearBase):
return Fp8LinearMethod(self)
return None
def get_scaled_act_names(self) -> List[str]:
return []
class Fp8LinearMethod(LinearMethodBase):
"""Linear method for FP8.
We now support common FP16/BF16 model checkpoints ONLY. The weight
scaling factor will be initialized after the model weights are loaded.
Limitations:
1. Only support per-tensor quantization due to torch._scaled_mm support.
2. Only support float8_e4m3fn data type due to the limitation of
torch._scaled_mm (https://github.com/pytorch/pytorch/blob/2e48b39603411a41c5025efbe52f89560b827825/aten/src/ATen/native/cuda/Blas.cpp#L854-L856)
Args:
quant_config: The quantization config.
"""
def __init__(self, quant_config: Fp8Config):
self.quant_config = quant_config
def create_weights(
self,
layer: torch.nn.Module,
input_size_per_partition: int,
output_partition_sizes: List[int],
input_size: int,
output_size: int,
params_dtype: torch.dtype,
**extra_weight_attrs,
):
output_size_per_partition = sum(output_partition_sizes)
weight = Parameter(torch.empty(output_size_per_partition,
input_size_per_partition,
dtype=params_dtype),
requires_grad=False)
layer.register_parameter("weight", weight)
set_weight_attrs(weight, {"input_dim": 1, "output_dim": 0})
set_weight_attrs(weight, extra_weight_attrs)
w_scale = Parameter(
torch.empty(1, dtype=torch.float32),
requires_grad=False,
)
layer.register_parameter("weight_scaling_factor", w_scale)
def process_weights_after_loading(self, layer: Module) -> None:
# Although the quant_method is propagated to all layers,
# only linear layers invoke "create_weights". So we check
# whether "weight_scaling_facor" is registered to determine
# whether the layer is a linear layer that requires quantization.
if not hasattr(layer, "weight_scaling_factor"):
return
qweight, weight_scale = ops.scaled_fp8_quant(layer.weight)
# torch._scaled_mm requires column-major in the second
# input (weight), so we transpose the quantized weight.
layer.weight = Parameter(qweight.t(), requires_grad=False)
layer.weight_scaling_factor.data.copy_(weight_scale)
def apply(self,
layer: torch.nn.Module,
x: torch.Tensor,
bias: Optional[torch.Tensor] = None) -> torch.Tensor:
qinput, x_scale = ops.scaled_fp8_quant(x)
output, _ = torch._scaled_mm(
qinput,
layer.weight,
out_dtype=x.dtype,
scale_a=x_scale,
scale_b=layer.weight_scaling_factor,
bias=bias,
)
return output