vllm/tests/test_sharded_state_loader.py
Russell Bryant e489ad7a21
[Misc] Add SPDX-License-Identifier headers to python source files (#12628)
- **Add SPDX license headers to python source files**
- **Check for SPDX headers using pre-commit**

commit 9d7ef44c3cfb72ca4c32e1c677d99259d10d4745
Author: Russell Bryant <rbryant@redhat.com>
Date:   Fri Jan 31 14:18:24 2025 -0500

    Add SPDX license headers to python source files
    
This commit adds SPDX license headers to python source files as
recommended to
the project by the Linux Foundation. These headers provide a concise way
that is
both human and machine readable for communicating license information
for each
source file. It helps avoid any ambiguity about the license of the code
and can
    also be easily used by tools to help manage license compliance.
    
The Linux Foundation runs license scans against the codebase to help
ensure
    we are in compliance with the licenses of the code we use, including
dependencies. Having these headers in place helps that tool do its job.
    
    More information can be found on the SPDX site:
    
    - https://spdx.dev/learn/handling-license-info/
    
    Signed-off-by: Russell Bryant <rbryant@redhat.com>

commit 5a1cf1cb3b80759131c73f6a9dddebccac039dea
Author: Russell Bryant <rbryant@redhat.com>
Date:   Fri Jan 31 14:36:32 2025 -0500

    Check for SPDX headers using pre-commit
    
    Signed-off-by: Russell Bryant <rbryant@redhat.com>

---------

Signed-off-by: Russell Bryant <rbryant@redhat.com>
2025-02-02 11:58:18 -08:00

134 lines
4.3 KiB
Python

# SPDX-License-Identifier: Apache-2.0
import multiprocessing as mp
import os
import shutil
from tempfile import TemporaryDirectory
import pytest
import torch
from huggingface_hub import snapshot_download
from vllm import LLM, SamplingParams
from vllm.model_executor.model_loader.loader import ShardedStateLoader
prompts = [
"Hello, my name is",
"The president of the United States is",
"The capital of France is",
"The future of AI is",
]
# Create a sampling params object.
sampling_params = SamplingParams(
temperature=0,
max_tokens=256,
ignore_eos=True,
)
def test_filter_subtensors():
state_dict = {
"a": torch.empty(2),
"b": torch.empty((2, 4)),
"c": torch.empty((2, 4, 8)),
}
state_dict.update({
"x": state_dict["b"],
"y": state_dict["c"][1, 2, :],
"z": state_dict["c"][1, :, 4],
})
filtered_state_dict = ShardedStateLoader._filter_subtensors(state_dict)
assert tuple(filtered_state_dict.keys()) == ("a", "b", "c")
for key, tensor in filtered_state_dict.items():
# NOTE: don't use `equal` here, as the tensor might contain NaNs
assert tensor is state_dict[key]
@pytest.fixture(scope="module")
def llama_2_7b_files():
with TemporaryDirectory() as cache_dir:
input_dir = snapshot_download("meta-llama/Llama-3.2-1B",
cache_dir=cache_dir,
ignore_patterns=["*.bin*", "original/*"])
yield input_dir
def _run_writer(input_dir, output_dir, weights_patterns, **kwargs):
llm_sharded_writer = LLM(model=input_dir, **kwargs)
# Dump worker states to output directory
llm_sharded_writer.llm_engine.model_executor.save_sharded_state(
path=output_dir)
# Copy metadata files to output directory
for file in os.listdir(input_dir):
if not any(
file.endswith(ext) and not os.path.isdir(file)
for ext in weights_patterns):
shutil.copy(f"{input_dir}/{file}", output_dir)
def _run_generate(input_dir, queue: mp.Queue, **kwargs):
llm = LLM(model=input_dir, **kwargs)
gen = llm.generate(prompts, sampling_params)
queue.put([g.outputs[0].__dict__ for g in gen])
queue.close()
queue.join_thread()
@pytest.mark.parametrize("enable_lora", [False, True])
@pytest.mark.parametrize("tp_size", [1, 2])
def test_sharded_state_loader(enable_lora, tp_size, num_gpus_available,
llama_2_7b_files):
if num_gpus_available < tp_size:
pytest.skip(f"Not enough GPUs for tensor parallelism {tp_size}")
weights_patterns = ("*.safetensors", )
gpu_memory_utilization = 0.8
input_dir = llama_2_7b_files
ctx = mp.get_context("spawn")
# Run in separate processes for memory & CUDA isolation
with TemporaryDirectory() as output_dir:
p = ctx.Process(target=_run_writer,
args=(input_dir, output_dir, weights_patterns),
kwargs=dict(
tensor_parallel_size=tp_size,
distributed_executor_backend="mp",
gpu_memory_utilization=gpu_memory_utilization,
enforce_eager=True,
))
p.start()
p.join()
queue = ctx.Queue()
p = ctx.Process(target=_run_generate,
args=(input_dir, queue),
kwargs=dict(
distributed_executor_backend="mp",
enable_lora=enable_lora,
gpu_memory_utilization=gpu_memory_utilization,
tensor_parallel_size=tp_size,
))
p.start()
p.join()
out_before = queue.get()
p = ctx.Process(target=_run_generate,
args=(output_dir, queue),
kwargs=dict(
distributed_executor_backend="mp",
enable_lora=enable_lora,
gpu_memory_utilization=gpu_memory_utilization,
tensor_parallel_size=tp_size,
load_format="sharded_state",
))
p.start()
p.join()
out_after = queue.get()
assert out_before == out_after