vllm/tests/kernels/test_cutlass.py
Russell Bryant e489ad7a21
[Misc] Add SPDX-License-Identifier headers to python source files (#12628)
- **Add SPDX license headers to python source files**
- **Check for SPDX headers using pre-commit**

commit 9d7ef44c3cfb72ca4c32e1c677d99259d10d4745
Author: Russell Bryant <rbryant@redhat.com>
Date:   Fri Jan 31 14:18:24 2025 -0500

    Add SPDX license headers to python source files
    
This commit adds SPDX license headers to python source files as
recommended to
the project by the Linux Foundation. These headers provide a concise way
that is
both human and machine readable for communicating license information
for each
source file. It helps avoid any ambiguity about the license of the code
and can
    also be easily used by tools to help manage license compliance.
    
The Linux Foundation runs license scans against the codebase to help
ensure
    we are in compliance with the licenses of the code we use, including
dependencies. Having these headers in place helps that tool do its job.
    
    More information can be found on the SPDX site:
    
    - https://spdx.dev/learn/handling-license-info/
    
    Signed-off-by: Russell Bryant <rbryant@redhat.com>

commit 5a1cf1cb3b80759131c73f6a9dddebccac039dea
Author: Russell Bryant <rbryant@redhat.com>
Date:   Fri Jan 31 14:36:32 2025 -0500

    Check for SPDX headers using pre-commit
    
    Signed-off-by: Russell Bryant <rbryant@redhat.com>

---------

Signed-off-by: Russell Bryant <rbryant@redhat.com>
2025-02-02 11:58:18 -08:00

511 lines
20 KiB
Python

# SPDX-License-Identifier: Apache-2.0
"""Tests for cutlass kernels
Run `pytest tests/kernels/test_cutlass.py`.
"""
from typing import Type
import pytest
import torch
from tests.kernels.utils import opcheck
from vllm import _custom_ops as ops
from vllm.platforms import current_platform
from vllm.utils import cdiv
from .utils import baseline_scaled_mm, to_fp8, to_int8
MNK_FACTORS = [
(1, 256, 128),
(1, 16384, 1024),
(1, 24576, 496),
(16, 256, 496),
(16, 16384, 128),
(16, 24576, 4096),
(32, 8192, 4096),
(32, 16384, 4096),
(33, 1024, 1024),
(33, 8192, 128),
(64, 2048, 496),
(64, 16384, 1024),
(100, 8192, 496),
(128, 32768, 4096),
(256, 4096, 4096),
(512, 256, 1024),
(512, 8192, 4096),
(512, 16384, 128),
(512, 24576, 128),
]
CUDA_DEVICES = [
f"cuda:{i}" for i in range(1 if torch.cuda.device_count() == 1 else 2)
]
# -1 means full extent in that dimension
TENSORWISE_GROUP_SHAPE = (-1, -1)
PER_TOKEN_GROUP_SHAPE = (1, -1)
PER_OUT_CH_GROUP_SHAPE = (-1, 1)
capability = current_platform.get_device_capability()
capability = capability[0] * 10 + capability[1]
def rand_int8(shape: tuple, device: str = "cuda"):
return to_int8(torch.rand(shape, device=device) * 255 - 128)
def group_scale_helper(shape, group_shape):
return [shape[i] if s < 0 else s for i, s in enumerate(group_shape)]
def scale_shape(shape, group_shape):
assert len(shape) == len(group_shape)
group_shape = group_scale_helper(shape, group_shape)
return tuple(
cdiv(shape[i], group_shape[i]) for i in range(len(group_shape)))
def cutlass_fp8_gemm_helper(m: int,
n: int,
k: int,
a_scale_group_shape: tuple,
b_scale_group_shape: tuple,
use_bias: bool,
out_dtype: Type[torch.dtype] = torch.bfloat16,
device: str = "cuda"):
# Test for a cutlass kernel with per-token activation quantization
# and per-output channel weight quantization.
a = to_fp8(torch.randn((m, k), device=device))
b = to_fp8(torch.randn((n, k), device=device).t())
a_scales_shape = scale_shape(a.shape, a_scale_group_shape)
b_scales_shape = scale_shape(b.shape, b_scale_group_shape)
scale_a = (torch.randn(a_scales_shape, device=device, dtype=torch.float32))
scale_b = (torch.randn(b_scales_shape, device=device, dtype=torch.float32))
# make scales M-major for blockwise quant, doesn't affect 1D scales
scale_a = scale_a.t().contiguous().t()
# make scales K-major for blockwise quant, doesn't affect 1D scales
scale_b = scale_b.t().contiguous().t()
if use_bias:
bias = torch.rand((n, ), device=device, dtype=out_dtype) * 10
else:
bias = None
out = ops.cutlass_scaled_mm(a, b, scale_a, scale_b, out_dtype, bias)
baseline = baseline_scaled_mm(a, b, scale_a, scale_b, out_dtype, bias)
torch.testing.assert_close(out, baseline, rtol=1e-2, atol=5e-2)
opcheck(torch.ops._C.cutlass_scaled_mm,
(out, a, b, scale_a, scale_b, bias))
def cutlass_int8_gemm_helper(m: int,
n: int,
k: int,
a_scale_group_shape: tuple,
b_scale_group_shape: tuple,
use_bias: bool,
out_dtype: Type[torch.dtype] = torch.bfloat16,
device: str = "cuda"):
# Test for a cutlass kernel with per-token activation quantization
# and per-output channel weight quantization.
a = to_int8(torch.randn((m, k), device=device) * 5)
b = to_int8(torch.randn((n, k), device=device).t() * 5)
a_scales_shape = scale_shape(a.shape, a_scale_group_shape)
b_scales_shape = scale_shape(b.shape, b_scale_group_shape)
scale_a = (torch.randn(a_scales_shape, device=device, dtype=torch.float32))
scale_b = (torch.randn(b_scales_shape, device=device, dtype=torch.float32))
if use_bias:
bias = torch.rand((n, ), device=device, dtype=out_dtype) * 10
else:
bias = None
out = ops.cutlass_scaled_mm(a, b, scale_a, scale_b, out_dtype, bias)
baseline = baseline_scaled_mm(a, b, scale_a, scale_b, out_dtype, bias)
torch.testing.assert_close(out, baseline, rtol=1e-1, atol=1e0)
opcheck(torch.ops._C.cutlass_scaled_mm,
(out, a, b, scale_a, scale_b, bias))
@pytest.mark.parametrize("m,n,k", MNK_FACTORS)
@pytest.mark.parametrize("a_scale_group_shape",
[PER_TOKEN_GROUP_SHAPE, TENSORWISE_GROUP_SHAPE])
@pytest.mark.parametrize("b_scale_group_shape",
[PER_OUT_CH_GROUP_SHAPE, TENSORWISE_GROUP_SHAPE])
@pytest.mark.parametrize("use_bias", [True, False])
@pytest.mark.skipif(not current_platform.has_device_capability(89),
reason="FP8 is not supported on this GPU type.")
def test_cutlass_fp8_gemm(m: int, n: int, k: int, a_scale_group_shape,
b_scale_group_shape, use_bias: bool):
cutlass_fp8_gemm_helper(m, n, k, a_scale_group_shape, b_scale_group_shape,
use_bias)
@pytest.mark.parametrize("m,n,k", MNK_FACTORS)
@pytest.mark.parametrize("a_scale_group_shape,b_scale_group_shape",
[((1, 128), (128, 128))])
@pytest.mark.parametrize("use_bias", [False])
@pytest.mark.skipif(not current_platform.has_device_capability(90),
reason="FP8 blockwise is not supported on this GPU type.")
def test_cutlass_fp8_blockwise_scale_gemm(m: int, n: int, k: int,
a_scale_group_shape,
b_scale_group_shape, use_bias: bool):
if k % b_scale_group_shape[0] != 0 or n % b_scale_group_shape[1] != 0:
return
if m % a_scale_group_shape[0] != 0 or k % a_scale_group_shape[1] != 0:
return
cutlass_fp8_gemm_helper(m, n, k, a_scale_group_shape, b_scale_group_shape,
use_bias)
@pytest.mark.parametrize("m,n,k", MNK_FACTORS)
@pytest.mark.parametrize("a_scale_group_shape",
[PER_TOKEN_GROUP_SHAPE, TENSORWISE_GROUP_SHAPE])
@pytest.mark.parametrize("b_scale_group_shape",
[PER_OUT_CH_GROUP_SHAPE, TENSORWISE_GROUP_SHAPE])
@pytest.mark.parametrize("use_bias", [True, False])
def test_cutlass_int8_gemm(m: int, n: int, k: int, a_scale_group_shape,
b_scale_group_shape, use_bias: bool):
cutlass_int8_gemm_helper(m, n, k, a_scale_group_shape, b_scale_group_shape,
use_bias)
@pytest.mark.parametrize("a_scale_group_shape",
[PER_TOKEN_GROUP_SHAPE, TENSORWISE_GROUP_SHAPE])
@pytest.mark.parametrize("b_scale_group_shape",
[PER_OUT_CH_GROUP_SHAPE, TENSORWISE_GROUP_SHAPE])
@pytest.mark.parametrize("out_dtype", [torch.bfloat16, torch.float16])
@pytest.mark.parametrize("use_bias", [True, False])
def test_cutlass_int8_gemm_output_dtype(a_scale_group_shape,
b_scale_group_shape,
out_dtype: Type[torch.dtype],
use_bias: bool):
cutlass_int8_gemm_helper(512,
512,
512,
a_scale_group_shape,
b_scale_group_shape,
use_bias,
out_dtype=out_dtype)
@pytest.mark.parametrize("a_scale_group_shape",
[PER_TOKEN_GROUP_SHAPE, TENSORWISE_GROUP_SHAPE])
@pytest.mark.parametrize("b_scale_group_shape",
[PER_OUT_CH_GROUP_SHAPE, TENSORWISE_GROUP_SHAPE])
@pytest.mark.parametrize("out_dtype", [torch.bfloat16, torch.float16])
@pytest.mark.parametrize("use_bias", [True, False])
@pytest.mark.skipif(not current_platform.has_device_capability(89),
reason="FP8 is not supported on this GPU type.")
def test_cutlass_fp8_gemm_output_dtype(a_scale_group_shape,
b_scale_group_shape,
out_dtype: Type[torch.dtype],
use_bias: bool):
cutlass_fp8_gemm_helper(512,
512,
512,
a_scale_group_shape,
b_scale_group_shape,
use_bias,
out_dtype=out_dtype)
@pytest.mark.parametrize("a_scale_group_shape,b_scale_group_shape",
[((1, 128), (128, 128))])
@pytest.mark.parametrize("out_dtype", [torch.bfloat16, torch.float16])
@pytest.mark.parametrize("use_bias", [False])
@pytest.mark.skipif(not current_platform.has_device_capability(90),
reason="FP8 blockwise is not supported on this GPU type.")
def test_cutlass_fp8_blockwise_scale_gemm_dtype(a_scale_group_shape,
b_scale_group_shape,
out_dtype: Type[torch.dtype],
use_bias: bool):
cutlass_fp8_gemm_helper(512,
512,
512,
a_scale_group_shape,
b_scale_group_shape,
use_bias,
out_dtype=out_dtype)
@pytest.mark.parametrize("a_scale_group_shape",
[PER_TOKEN_GROUP_SHAPE, TENSORWISE_GROUP_SHAPE])
@pytest.mark.parametrize("b_scale_group_shape",
[PER_OUT_CH_GROUP_SHAPE, TENSORWISE_GROUP_SHAPE])
@pytest.mark.parametrize("use_bias", [True, False])
@pytest.mark.parametrize("device", CUDA_DEVICES)
@pytest.mark.skipif(not current_platform.has_device_capability(89),
reason="FP8 is not supported on this GPU type.")
def test_cutlass_fp8_gemm_devices(a_scale_group_shape, b_scale_group_shape,
use_bias: bool, device: str):
cutlass_fp8_gemm_helper(512, 512, 512, a_scale_group_shape,
b_scale_group_shape, use_bias, torch.bfloat16,
device)
@pytest.mark.parametrize("a_scale_group_shape",
[PER_TOKEN_GROUP_SHAPE, TENSORWISE_GROUP_SHAPE])
@pytest.mark.parametrize("b_scale_group_shape",
[PER_OUT_CH_GROUP_SHAPE, TENSORWISE_GROUP_SHAPE])
@pytest.mark.parametrize("use_bias", [True, False])
@pytest.mark.parametrize("device", CUDA_DEVICES)
def test_cutlass_int8_gemm_devices(a_scale_group_shape, b_scale_group_shape,
use_bias: bool, device: str):
cutlass_int8_gemm_helper(512,
512,
512,
a_scale_group_shape,
b_scale_group_shape,
use_bias,
out_dtype=torch.bfloat16,
device=device)
# For the following two tests:
# N and K correspond to the size of the weight matrix and likely to be multiples
# of a large power of two. In any case, the kernel will have a naive fallback
# when N and K are not divisible by 16. But M is the number of tokens and the
# kernel must handle any M thrown at it.
@pytest.mark.parametrize("a_scale_group_shape",
[PER_TOKEN_GROUP_SHAPE, TENSORWISE_GROUP_SHAPE])
@pytest.mark.parametrize("b_scale_group_shape",
[PER_OUT_CH_GROUP_SHAPE, TENSORWISE_GROUP_SHAPE])
@pytest.mark.parametrize("use_bias", [True, False])
@pytest.mark.skipif(not current_platform.has_device_capability(89),
reason="FP8 is not supported on this GPU type.")
def test_cutlass_fp8_gemm_m_sweep(a_scale_group_shape, b_scale_group_shape,
use_bias: bool):
for nk in range(32, 128, 32):
for m in range(1, 128):
cutlass_fp8_gemm_helper(m, nk, nk, a_scale_group_shape,
b_scale_group_shape, use_bias)
@pytest.mark.parametrize("a_scale_group_shape",
[PER_TOKEN_GROUP_SHAPE, TENSORWISE_GROUP_SHAPE])
@pytest.mark.parametrize("b_scale_group_shape",
[PER_OUT_CH_GROUP_SHAPE, TENSORWISE_GROUP_SHAPE])
@pytest.mark.parametrize("use_bias", [True, False])
def test_cutlass_int8_gemm_m_sweep(a_scale_group_shape, b_scale_group_shape,
use_bias: bool):
for nk in range(32, 128, 32):
for m in range(1, 128):
cutlass_int8_gemm_helper(m, nk, nk, a_scale_group_shape,
b_scale_group_shape, use_bias)
@pytest.mark.parametrize("m", [32, 64, 128])
@pytest.mark.parametrize("n", [16, 32, 64])
@pytest.mark.parametrize("k", [64, 128, 256])
@pytest.mark.parametrize("out_dtype", [torch.bfloat16, torch.float16])
@pytest.mark.skip
def test_cutlass_int8_azp_bias_fold(m: int, n: int, k: int,
out_dtype: torch.dtype):
# Currently, the test is failing because folding azp into
# 16-bit bias loses too much precision
scale_a = torch.randn((1, 1), device="cuda", dtype=torch.float32) / 10
scale_b = torch.randn((1, n), device="cuda", dtype=torch.float32) / 10
aq_i8 = rand_int8((m, k))
bq_i8 = rand_int8((n, k)).t()
aq_i32 = aq_i8.to(dtype=torch.int32)
bq_i32 = bq_i8.to(dtype=torch.int32)
aq_f32 = aq_i8.to(dtype=torch.float32)
bq_f32 = bq_i8.to(dtype=torch.float32)
b_dq = scale_b * bq_f32
azp_a = torch.rand((1, ), device="cuda", dtype=torch.float32) * 10 + 1.5
azp_aq_i8 = (azp_a / scale_a).to(dtype=torch.int8)
azp_a = azp_aq_i8.to(dtype=torch.float32) * scale_a # correct for rounding
a_dq = scale_a * (aq_i32 + azp_aq_i8).to(dtype=torch.float32)
torch.testing.assert_close(a_dq, scale_a * aq_f32 + azp_a)
baseline_dq = torch.mm(a_dq, b_dq).to(out_dtype)
J = torch.ones((1, k), device="cuda", dtype=torch.float32)
azp_bias = (azp_a * scale_b * (J @ bq_f32)).to(out_dtype)
assert azp_bias.shape == (1, n)
assert azp_bias[0, :].shape == (n, )
baseline_q = (scale_a.to(device='cpu') * scale_b.to(device='cpu') * (
(aq_i32 + azp_aq_i8).to(device='cpu') @ bq_i32.to(device='cpu'))).to(
dtype=out_dtype, device='cuda')
out = ops.cutlass_scaled_mm(aq_i8,
bq_i8,
scale_a,
scale_b,
out_dtype=out_dtype,
bias=azp_bias[0, :])
torch.testing.assert_close(out, baseline_dq, rtol=1e-2, atol=1e0)
torch.testing.assert_close(out, baseline_q, rtol=1e-2, atol=1e0)
@pytest.mark.parametrize("m", [32, 64, 128])
@pytest.mark.parametrize("n", [16, 32, 64])
@pytest.mark.parametrize("k", [64, 128, 256])
@pytest.mark.parametrize("out_dtype", [torch.bfloat16, torch.float16])
@pytest.mark.parametrize("use_bias", [True, False])
@pytest.mark.parametrize("azp_per_token", [True, False])
def test_cutlass_int8_azp(m: int, n: int, k: int, out_dtype: torch.dtype,
use_bias: bool, azp_per_token: bool):
m_azp = m if azp_per_token else 1
scale_a = torch.randn((m_azp, 1), device="cuda", dtype=torch.float32) / 10
scale_b = torch.randn((1, n), device="cuda", dtype=torch.float32) / 10
aq_i8 = rand_int8((m, k))
aq_i32 = aq_i8.to(dtype=torch.int32)
aq_f32 = aq_i8.to(dtype=torch.float32)
bq_i8 = rand_int8((n, k)).t()
bq_i32 = bq_i8.to(dtype=torch.int32)
bq_f32 = bq_i8.to(dtype=torch.float32)
b_dq = scale_b * bq_f32
azp_a = torch.rand(
(m_azp, 1), device="cuda", dtype=torch.float32) * 10 + 1.5
azp_aq_i8 = (azp_a / scale_a).to(dtype=torch.int8)
azp_a = azp_aq_i8.to(dtype=torch.float32) * scale_a # correct for rounding
a_dq = scale_a * (aq_i32 - azp_aq_i8).to(dtype=torch.float32)
torch.testing.assert_close(a_dq,
scale_a * aq_f32 - azp_a,
rtol=1e-4,
atol=1e-3)
if use_bias:
bias = torch.rand((1, n), device="cuda", dtype=out_dtype) * 10 + 2.5
else:
bias = torch.zeros((1, n), device="cuda", dtype=out_dtype)
baseline_dq = (torch.mm(a_dq, b_dq) + bias).to(out_dtype)
# int32 mm not supported on CUDA
a_noazp_i32_cpu = (aq_i32 - azp_aq_i8).to(device='cpu')
cq = (a_noazp_i32_cpu @ bq_i32.to(device='cpu')).to(device='cuda')
baseline_q = (scale_a * scale_b * cq + bias).to(dtype=out_dtype)
# Hadamard is just the sum of the cols
azp_adj_i32 = bq_i32.sum(dim=0, keepdim=True, dtype=torch.int32)
azp_i32 = azp_aq_i8.to(dtype=torch.int32)
func_bias = bias if use_bias else None
if azp_per_token:
out = ops.cutlass_scaled_mm_azp(aq_i8, bq_i8, scale_a, scale_b,
out_dtype, azp_adj_i32, azp_i32,
func_bias)
else:
azp_with_adj_i32 = azp_i32 * azp_adj_i32
out = ops.cutlass_scaled_mm_azp(aq_i8, bq_i8, scale_a, scale_b,
out_dtype, azp_with_adj_i32, None,
func_bias)
# bfloat16 precision is 7-bit mantissa -> 2^-8 ~ 0.4%
# float16 precision is 10-bit mantissa -> 2^-11 ~ 0.05%
rtol = 1e-2 if out_dtype == torch.bfloat16 else 1e-3
atol = 1e-3
torch.testing.assert_close(out, baseline_dq, rtol=rtol, atol=atol)
torch.testing.assert_close(out, baseline_q, rtol=rtol, atol=atol)
if azp_per_token:
opcheck(torch.ops._C.cutlass_scaled_mm_azp,
(out, aq_i8, bq_i8, scale_a, scale_b, azp_adj_i32, azp_i32,
func_bias))
else:
opcheck(torch.ops._C.cutlass_scaled_mm_azp,
(out, aq_i8, bq_i8, scale_a, scale_b, azp_with_adj_i32, None,
func_bias))
# Test working with a subset of A and B
def test_cutlass_subset():
big_m, big_n, big_k = 1024, 1024, 1024
m, n, k = 512, 512, 512
whole_a = to_int8(torch.randn((big_m, big_k), device="cuda") * 5)
whole_b = to_int8(torch.randn((big_n, big_k), device="cuda").t() * 5)
a = whole_a[0:m, 0:k]
b = whole_b[0:k, 0:n]
scale_a = torch.randn((1, 1), device="cuda", dtype=torch.float32) / 10
scale_b = torch.randn((1, 1), device="cuda", dtype=torch.float32) / 10
out = ops.cutlass_scaled_mm(a,
b,
scale_a,
scale_b,
out_dtype=torch.bfloat16)
baseline = baseline_scaled_mm(a,
b,
scale_a,
scale_b,
out_dtype=torch.bfloat16)
torch.testing.assert_close(out, baseline, rtol=1e-1, atol=1e0)
# Test to make sure cuda graphs work
class CutlassLayer(torch.nn.Module):
def __init__(self, b, scale_a, scale_b, out_dtype):
super().__init__()
self.b = b
self.scale_a = scale_a
self.scale_b = scale_b
self.out_dtype = out_dtype
def forward(self, a):
return ops.cutlass_scaled_mm(a, self.b, self.scale_a, self.scale_b,
self.out_dtype)
@pytest.mark.parametrize("per_act_token", [True, False])
@pytest.mark.parametrize("per_out_ch", [True, False])
def test_cutlass_cuda_graph(per_act_token: bool, per_out_ch: bool):
m, n, k = 512, 512, 512
a = to_int8(torch.randn((m, k), device="cuda"))
b = to_int8(torch.randn((n, k), device="cuda").t())
m_a_scales = m if per_act_token else 1
n_b_scales = n if per_out_ch else 1
scale_a = (torch.randn(
(m_a_scales, 1), device="cuda", dtype=torch.float32) / 10)
scale_b = (torch.randn(
(1, n_b_scales), device="cuda", dtype=torch.float32) / 10)
# Construct a trivial model with a single layer that calls a CUTLASS kernel
model = CutlassLayer(b, scale_a, scale_b, torch.bfloat16)
# Run the model with a cuda graph
stream = torch.cuda.Stream()
with torch.cuda.stream(stream):
g = torch.cuda.CUDAGraph()
with torch.cuda.graph(g):
out = model(a)
out.zero_()
g.replay()
baseline = torch.mm(scale_a * a.to(dtype=torch.float32),
scale_b * b.to(dtype=torch.float32)).to(torch.bfloat16)
torch.testing.assert_close(out, baseline, rtol=1e-1, atol=1e0)
def test_cutlass_support_opcheck():
opcheck(torch.ops._C.cutlass_scaled_mm_supports_fp8, (capability, ))