
- **Add SPDX license headers to python source files** - **Check for SPDX headers using pre-commit** commit 9d7ef44c3cfb72ca4c32e1c677d99259d10d4745 Author: Russell Bryant <rbryant@redhat.com> Date: Fri Jan 31 14:18:24 2025 -0500 Add SPDX license headers to python source files This commit adds SPDX license headers to python source files as recommended to the project by the Linux Foundation. These headers provide a concise way that is both human and machine readable for communicating license information for each source file. It helps avoid any ambiguity about the license of the code and can also be easily used by tools to help manage license compliance. The Linux Foundation runs license scans against the codebase to help ensure we are in compliance with the licenses of the code we use, including dependencies. Having these headers in place helps that tool do its job. More information can be found on the SPDX site: - https://spdx.dev/learn/handling-license-info/ Signed-off-by: Russell Bryant <rbryant@redhat.com> commit 5a1cf1cb3b80759131c73f6a9dddebccac039dea Author: Russell Bryant <rbryant@redhat.com> Date: Fri Jan 31 14:36:32 2025 -0500 Check for SPDX headers using pre-commit Signed-off-by: Russell Bryant <rbryant@redhat.com> --------- Signed-off-by: Russell Bryant <rbryant@redhat.com>
511 lines
20 KiB
Python
511 lines
20 KiB
Python
# SPDX-License-Identifier: Apache-2.0
|
|
"""Tests for cutlass kernels
|
|
|
|
Run `pytest tests/kernels/test_cutlass.py`.
|
|
"""
|
|
from typing import Type
|
|
|
|
import pytest
|
|
import torch
|
|
|
|
from tests.kernels.utils import opcheck
|
|
from vllm import _custom_ops as ops
|
|
from vllm.platforms import current_platform
|
|
from vllm.utils import cdiv
|
|
|
|
from .utils import baseline_scaled_mm, to_fp8, to_int8
|
|
|
|
MNK_FACTORS = [
|
|
(1, 256, 128),
|
|
(1, 16384, 1024),
|
|
(1, 24576, 496),
|
|
(16, 256, 496),
|
|
(16, 16384, 128),
|
|
(16, 24576, 4096),
|
|
(32, 8192, 4096),
|
|
(32, 16384, 4096),
|
|
(33, 1024, 1024),
|
|
(33, 8192, 128),
|
|
(64, 2048, 496),
|
|
(64, 16384, 1024),
|
|
(100, 8192, 496),
|
|
(128, 32768, 4096),
|
|
(256, 4096, 4096),
|
|
(512, 256, 1024),
|
|
(512, 8192, 4096),
|
|
(512, 16384, 128),
|
|
(512, 24576, 128),
|
|
]
|
|
|
|
CUDA_DEVICES = [
|
|
f"cuda:{i}" for i in range(1 if torch.cuda.device_count() == 1 else 2)
|
|
]
|
|
|
|
# -1 means full extent in that dimension
|
|
TENSORWISE_GROUP_SHAPE = (-1, -1)
|
|
PER_TOKEN_GROUP_SHAPE = (1, -1)
|
|
PER_OUT_CH_GROUP_SHAPE = (-1, 1)
|
|
|
|
capability = current_platform.get_device_capability()
|
|
capability = capability[0] * 10 + capability[1]
|
|
|
|
|
|
def rand_int8(shape: tuple, device: str = "cuda"):
|
|
return to_int8(torch.rand(shape, device=device) * 255 - 128)
|
|
|
|
|
|
def group_scale_helper(shape, group_shape):
|
|
return [shape[i] if s < 0 else s for i, s in enumerate(group_shape)]
|
|
|
|
|
|
def scale_shape(shape, group_shape):
|
|
assert len(shape) == len(group_shape)
|
|
group_shape = group_scale_helper(shape, group_shape)
|
|
return tuple(
|
|
cdiv(shape[i], group_shape[i]) for i in range(len(group_shape)))
|
|
|
|
|
|
def cutlass_fp8_gemm_helper(m: int,
|
|
n: int,
|
|
k: int,
|
|
a_scale_group_shape: tuple,
|
|
b_scale_group_shape: tuple,
|
|
use_bias: bool,
|
|
out_dtype: Type[torch.dtype] = torch.bfloat16,
|
|
device: str = "cuda"):
|
|
# Test for a cutlass kernel with per-token activation quantization
|
|
# and per-output channel weight quantization.
|
|
a = to_fp8(torch.randn((m, k), device=device))
|
|
b = to_fp8(torch.randn((n, k), device=device).t())
|
|
|
|
a_scales_shape = scale_shape(a.shape, a_scale_group_shape)
|
|
b_scales_shape = scale_shape(b.shape, b_scale_group_shape)
|
|
|
|
scale_a = (torch.randn(a_scales_shape, device=device, dtype=torch.float32))
|
|
scale_b = (torch.randn(b_scales_shape, device=device, dtype=torch.float32))
|
|
|
|
# make scales M-major for blockwise quant, doesn't affect 1D scales
|
|
scale_a = scale_a.t().contiguous().t()
|
|
# make scales K-major for blockwise quant, doesn't affect 1D scales
|
|
scale_b = scale_b.t().contiguous().t()
|
|
|
|
if use_bias:
|
|
bias = torch.rand((n, ), device=device, dtype=out_dtype) * 10
|
|
else:
|
|
bias = None
|
|
|
|
out = ops.cutlass_scaled_mm(a, b, scale_a, scale_b, out_dtype, bias)
|
|
baseline = baseline_scaled_mm(a, b, scale_a, scale_b, out_dtype, bias)
|
|
|
|
torch.testing.assert_close(out, baseline, rtol=1e-2, atol=5e-2)
|
|
|
|
opcheck(torch.ops._C.cutlass_scaled_mm,
|
|
(out, a, b, scale_a, scale_b, bias))
|
|
|
|
|
|
def cutlass_int8_gemm_helper(m: int,
|
|
n: int,
|
|
k: int,
|
|
a_scale_group_shape: tuple,
|
|
b_scale_group_shape: tuple,
|
|
use_bias: bool,
|
|
out_dtype: Type[torch.dtype] = torch.bfloat16,
|
|
device: str = "cuda"):
|
|
# Test for a cutlass kernel with per-token activation quantization
|
|
# and per-output channel weight quantization.
|
|
a = to_int8(torch.randn((m, k), device=device) * 5)
|
|
b = to_int8(torch.randn((n, k), device=device).t() * 5)
|
|
|
|
a_scales_shape = scale_shape(a.shape, a_scale_group_shape)
|
|
b_scales_shape = scale_shape(b.shape, b_scale_group_shape)
|
|
|
|
scale_a = (torch.randn(a_scales_shape, device=device, dtype=torch.float32))
|
|
scale_b = (torch.randn(b_scales_shape, device=device, dtype=torch.float32))
|
|
|
|
if use_bias:
|
|
bias = torch.rand((n, ), device=device, dtype=out_dtype) * 10
|
|
else:
|
|
bias = None
|
|
|
|
out = ops.cutlass_scaled_mm(a, b, scale_a, scale_b, out_dtype, bias)
|
|
baseline = baseline_scaled_mm(a, b, scale_a, scale_b, out_dtype, bias)
|
|
|
|
torch.testing.assert_close(out, baseline, rtol=1e-1, atol=1e0)
|
|
|
|
opcheck(torch.ops._C.cutlass_scaled_mm,
|
|
(out, a, b, scale_a, scale_b, bias))
|
|
|
|
|
|
@pytest.mark.parametrize("m,n,k", MNK_FACTORS)
|
|
@pytest.mark.parametrize("a_scale_group_shape",
|
|
[PER_TOKEN_GROUP_SHAPE, TENSORWISE_GROUP_SHAPE])
|
|
@pytest.mark.parametrize("b_scale_group_shape",
|
|
[PER_OUT_CH_GROUP_SHAPE, TENSORWISE_GROUP_SHAPE])
|
|
@pytest.mark.parametrize("use_bias", [True, False])
|
|
@pytest.mark.skipif(not current_platform.has_device_capability(89),
|
|
reason="FP8 is not supported on this GPU type.")
|
|
def test_cutlass_fp8_gemm(m: int, n: int, k: int, a_scale_group_shape,
|
|
b_scale_group_shape, use_bias: bool):
|
|
cutlass_fp8_gemm_helper(m, n, k, a_scale_group_shape, b_scale_group_shape,
|
|
use_bias)
|
|
|
|
|
|
@pytest.mark.parametrize("m,n,k", MNK_FACTORS)
|
|
@pytest.mark.parametrize("a_scale_group_shape,b_scale_group_shape",
|
|
[((1, 128), (128, 128))])
|
|
@pytest.mark.parametrize("use_bias", [False])
|
|
@pytest.mark.skipif(not current_platform.has_device_capability(90),
|
|
reason="FP8 blockwise is not supported on this GPU type.")
|
|
def test_cutlass_fp8_blockwise_scale_gemm(m: int, n: int, k: int,
|
|
a_scale_group_shape,
|
|
b_scale_group_shape, use_bias: bool):
|
|
if k % b_scale_group_shape[0] != 0 or n % b_scale_group_shape[1] != 0:
|
|
return
|
|
if m % a_scale_group_shape[0] != 0 or k % a_scale_group_shape[1] != 0:
|
|
return
|
|
cutlass_fp8_gemm_helper(m, n, k, a_scale_group_shape, b_scale_group_shape,
|
|
use_bias)
|
|
|
|
|
|
@pytest.mark.parametrize("m,n,k", MNK_FACTORS)
|
|
@pytest.mark.parametrize("a_scale_group_shape",
|
|
[PER_TOKEN_GROUP_SHAPE, TENSORWISE_GROUP_SHAPE])
|
|
@pytest.mark.parametrize("b_scale_group_shape",
|
|
[PER_OUT_CH_GROUP_SHAPE, TENSORWISE_GROUP_SHAPE])
|
|
@pytest.mark.parametrize("use_bias", [True, False])
|
|
def test_cutlass_int8_gemm(m: int, n: int, k: int, a_scale_group_shape,
|
|
b_scale_group_shape, use_bias: bool):
|
|
cutlass_int8_gemm_helper(m, n, k, a_scale_group_shape, b_scale_group_shape,
|
|
use_bias)
|
|
|
|
|
|
@pytest.mark.parametrize("a_scale_group_shape",
|
|
[PER_TOKEN_GROUP_SHAPE, TENSORWISE_GROUP_SHAPE])
|
|
@pytest.mark.parametrize("b_scale_group_shape",
|
|
[PER_OUT_CH_GROUP_SHAPE, TENSORWISE_GROUP_SHAPE])
|
|
@pytest.mark.parametrize("out_dtype", [torch.bfloat16, torch.float16])
|
|
@pytest.mark.parametrize("use_bias", [True, False])
|
|
def test_cutlass_int8_gemm_output_dtype(a_scale_group_shape,
|
|
b_scale_group_shape,
|
|
out_dtype: Type[torch.dtype],
|
|
use_bias: bool):
|
|
cutlass_int8_gemm_helper(512,
|
|
512,
|
|
512,
|
|
a_scale_group_shape,
|
|
b_scale_group_shape,
|
|
use_bias,
|
|
out_dtype=out_dtype)
|
|
|
|
|
|
@pytest.mark.parametrize("a_scale_group_shape",
|
|
[PER_TOKEN_GROUP_SHAPE, TENSORWISE_GROUP_SHAPE])
|
|
@pytest.mark.parametrize("b_scale_group_shape",
|
|
[PER_OUT_CH_GROUP_SHAPE, TENSORWISE_GROUP_SHAPE])
|
|
@pytest.mark.parametrize("out_dtype", [torch.bfloat16, torch.float16])
|
|
@pytest.mark.parametrize("use_bias", [True, False])
|
|
@pytest.mark.skipif(not current_platform.has_device_capability(89),
|
|
reason="FP8 is not supported on this GPU type.")
|
|
def test_cutlass_fp8_gemm_output_dtype(a_scale_group_shape,
|
|
b_scale_group_shape,
|
|
out_dtype: Type[torch.dtype],
|
|
use_bias: bool):
|
|
cutlass_fp8_gemm_helper(512,
|
|
512,
|
|
512,
|
|
a_scale_group_shape,
|
|
b_scale_group_shape,
|
|
use_bias,
|
|
out_dtype=out_dtype)
|
|
|
|
|
|
@pytest.mark.parametrize("a_scale_group_shape,b_scale_group_shape",
|
|
[((1, 128), (128, 128))])
|
|
@pytest.mark.parametrize("out_dtype", [torch.bfloat16, torch.float16])
|
|
@pytest.mark.parametrize("use_bias", [False])
|
|
@pytest.mark.skipif(not current_platform.has_device_capability(90),
|
|
reason="FP8 blockwise is not supported on this GPU type.")
|
|
def test_cutlass_fp8_blockwise_scale_gemm_dtype(a_scale_group_shape,
|
|
b_scale_group_shape,
|
|
out_dtype: Type[torch.dtype],
|
|
use_bias: bool):
|
|
cutlass_fp8_gemm_helper(512,
|
|
512,
|
|
512,
|
|
a_scale_group_shape,
|
|
b_scale_group_shape,
|
|
use_bias,
|
|
out_dtype=out_dtype)
|
|
|
|
|
|
@pytest.mark.parametrize("a_scale_group_shape",
|
|
[PER_TOKEN_GROUP_SHAPE, TENSORWISE_GROUP_SHAPE])
|
|
@pytest.mark.parametrize("b_scale_group_shape",
|
|
[PER_OUT_CH_GROUP_SHAPE, TENSORWISE_GROUP_SHAPE])
|
|
@pytest.mark.parametrize("use_bias", [True, False])
|
|
@pytest.mark.parametrize("device", CUDA_DEVICES)
|
|
@pytest.mark.skipif(not current_platform.has_device_capability(89),
|
|
reason="FP8 is not supported on this GPU type.")
|
|
def test_cutlass_fp8_gemm_devices(a_scale_group_shape, b_scale_group_shape,
|
|
use_bias: bool, device: str):
|
|
cutlass_fp8_gemm_helper(512, 512, 512, a_scale_group_shape,
|
|
b_scale_group_shape, use_bias, torch.bfloat16,
|
|
device)
|
|
|
|
|
|
@pytest.mark.parametrize("a_scale_group_shape",
|
|
[PER_TOKEN_GROUP_SHAPE, TENSORWISE_GROUP_SHAPE])
|
|
@pytest.mark.parametrize("b_scale_group_shape",
|
|
[PER_OUT_CH_GROUP_SHAPE, TENSORWISE_GROUP_SHAPE])
|
|
@pytest.mark.parametrize("use_bias", [True, False])
|
|
@pytest.mark.parametrize("device", CUDA_DEVICES)
|
|
def test_cutlass_int8_gemm_devices(a_scale_group_shape, b_scale_group_shape,
|
|
use_bias: bool, device: str):
|
|
cutlass_int8_gemm_helper(512,
|
|
512,
|
|
512,
|
|
a_scale_group_shape,
|
|
b_scale_group_shape,
|
|
use_bias,
|
|
out_dtype=torch.bfloat16,
|
|
device=device)
|
|
|
|
|
|
# For the following two tests:
|
|
# N and K correspond to the size of the weight matrix and likely to be multiples
|
|
# of a large power of two. In any case, the kernel will have a naive fallback
|
|
# when N and K are not divisible by 16. But M is the number of tokens and the
|
|
# kernel must handle any M thrown at it.
|
|
@pytest.mark.parametrize("a_scale_group_shape",
|
|
[PER_TOKEN_GROUP_SHAPE, TENSORWISE_GROUP_SHAPE])
|
|
@pytest.mark.parametrize("b_scale_group_shape",
|
|
[PER_OUT_CH_GROUP_SHAPE, TENSORWISE_GROUP_SHAPE])
|
|
@pytest.mark.parametrize("use_bias", [True, False])
|
|
@pytest.mark.skipif(not current_platform.has_device_capability(89),
|
|
reason="FP8 is not supported on this GPU type.")
|
|
def test_cutlass_fp8_gemm_m_sweep(a_scale_group_shape, b_scale_group_shape,
|
|
use_bias: bool):
|
|
for nk in range(32, 128, 32):
|
|
for m in range(1, 128):
|
|
cutlass_fp8_gemm_helper(m, nk, nk, a_scale_group_shape,
|
|
b_scale_group_shape, use_bias)
|
|
|
|
|
|
@pytest.mark.parametrize("a_scale_group_shape",
|
|
[PER_TOKEN_GROUP_SHAPE, TENSORWISE_GROUP_SHAPE])
|
|
@pytest.mark.parametrize("b_scale_group_shape",
|
|
[PER_OUT_CH_GROUP_SHAPE, TENSORWISE_GROUP_SHAPE])
|
|
@pytest.mark.parametrize("use_bias", [True, False])
|
|
def test_cutlass_int8_gemm_m_sweep(a_scale_group_shape, b_scale_group_shape,
|
|
use_bias: bool):
|
|
for nk in range(32, 128, 32):
|
|
for m in range(1, 128):
|
|
cutlass_int8_gemm_helper(m, nk, nk, a_scale_group_shape,
|
|
b_scale_group_shape, use_bias)
|
|
|
|
|
|
@pytest.mark.parametrize("m", [32, 64, 128])
|
|
@pytest.mark.parametrize("n", [16, 32, 64])
|
|
@pytest.mark.parametrize("k", [64, 128, 256])
|
|
@pytest.mark.parametrize("out_dtype", [torch.bfloat16, torch.float16])
|
|
@pytest.mark.skip
|
|
def test_cutlass_int8_azp_bias_fold(m: int, n: int, k: int,
|
|
out_dtype: torch.dtype):
|
|
# Currently, the test is failing because folding azp into
|
|
# 16-bit bias loses too much precision
|
|
scale_a = torch.randn((1, 1), device="cuda", dtype=torch.float32) / 10
|
|
scale_b = torch.randn((1, n), device="cuda", dtype=torch.float32) / 10
|
|
|
|
aq_i8 = rand_int8((m, k))
|
|
bq_i8 = rand_int8((n, k)).t()
|
|
|
|
aq_i32 = aq_i8.to(dtype=torch.int32)
|
|
bq_i32 = bq_i8.to(dtype=torch.int32)
|
|
|
|
aq_f32 = aq_i8.to(dtype=torch.float32)
|
|
bq_f32 = bq_i8.to(dtype=torch.float32)
|
|
|
|
b_dq = scale_b * bq_f32
|
|
|
|
azp_a = torch.rand((1, ), device="cuda", dtype=torch.float32) * 10 + 1.5
|
|
azp_aq_i8 = (azp_a / scale_a).to(dtype=torch.int8)
|
|
azp_a = azp_aq_i8.to(dtype=torch.float32) * scale_a # correct for rounding
|
|
|
|
a_dq = scale_a * (aq_i32 + azp_aq_i8).to(dtype=torch.float32)
|
|
torch.testing.assert_close(a_dq, scale_a * aq_f32 + azp_a)
|
|
|
|
baseline_dq = torch.mm(a_dq, b_dq).to(out_dtype)
|
|
|
|
J = torch.ones((1, k), device="cuda", dtype=torch.float32)
|
|
azp_bias = (azp_a * scale_b * (J @ bq_f32)).to(out_dtype)
|
|
assert azp_bias.shape == (1, n)
|
|
assert azp_bias[0, :].shape == (n, )
|
|
|
|
baseline_q = (scale_a.to(device='cpu') * scale_b.to(device='cpu') * (
|
|
(aq_i32 + azp_aq_i8).to(device='cpu') @ bq_i32.to(device='cpu'))).to(
|
|
dtype=out_dtype, device='cuda')
|
|
|
|
out = ops.cutlass_scaled_mm(aq_i8,
|
|
bq_i8,
|
|
scale_a,
|
|
scale_b,
|
|
out_dtype=out_dtype,
|
|
bias=azp_bias[0, :])
|
|
torch.testing.assert_close(out, baseline_dq, rtol=1e-2, atol=1e0)
|
|
torch.testing.assert_close(out, baseline_q, rtol=1e-2, atol=1e0)
|
|
|
|
|
|
@pytest.mark.parametrize("m", [32, 64, 128])
|
|
@pytest.mark.parametrize("n", [16, 32, 64])
|
|
@pytest.mark.parametrize("k", [64, 128, 256])
|
|
@pytest.mark.parametrize("out_dtype", [torch.bfloat16, torch.float16])
|
|
@pytest.mark.parametrize("use_bias", [True, False])
|
|
@pytest.mark.parametrize("azp_per_token", [True, False])
|
|
def test_cutlass_int8_azp(m: int, n: int, k: int, out_dtype: torch.dtype,
|
|
use_bias: bool, azp_per_token: bool):
|
|
m_azp = m if azp_per_token else 1
|
|
scale_a = torch.randn((m_azp, 1), device="cuda", dtype=torch.float32) / 10
|
|
scale_b = torch.randn((1, n), device="cuda", dtype=torch.float32) / 10
|
|
|
|
aq_i8 = rand_int8((m, k))
|
|
aq_i32 = aq_i8.to(dtype=torch.int32)
|
|
aq_f32 = aq_i8.to(dtype=torch.float32)
|
|
|
|
bq_i8 = rand_int8((n, k)).t()
|
|
bq_i32 = bq_i8.to(dtype=torch.int32)
|
|
bq_f32 = bq_i8.to(dtype=torch.float32)
|
|
b_dq = scale_b * bq_f32
|
|
|
|
azp_a = torch.rand(
|
|
(m_azp, 1), device="cuda", dtype=torch.float32) * 10 + 1.5
|
|
azp_aq_i8 = (azp_a / scale_a).to(dtype=torch.int8)
|
|
azp_a = azp_aq_i8.to(dtype=torch.float32) * scale_a # correct for rounding
|
|
|
|
a_dq = scale_a * (aq_i32 - azp_aq_i8).to(dtype=torch.float32)
|
|
torch.testing.assert_close(a_dq,
|
|
scale_a * aq_f32 - azp_a,
|
|
rtol=1e-4,
|
|
atol=1e-3)
|
|
|
|
if use_bias:
|
|
bias = torch.rand((1, n), device="cuda", dtype=out_dtype) * 10 + 2.5
|
|
else:
|
|
bias = torch.zeros((1, n), device="cuda", dtype=out_dtype)
|
|
|
|
baseline_dq = (torch.mm(a_dq, b_dq) + bias).to(out_dtype)
|
|
|
|
# int32 mm not supported on CUDA
|
|
a_noazp_i32_cpu = (aq_i32 - azp_aq_i8).to(device='cpu')
|
|
cq = (a_noazp_i32_cpu @ bq_i32.to(device='cpu')).to(device='cuda')
|
|
baseline_q = (scale_a * scale_b * cq + bias).to(dtype=out_dtype)
|
|
|
|
# Hadamard is just the sum of the cols
|
|
azp_adj_i32 = bq_i32.sum(dim=0, keepdim=True, dtype=torch.int32)
|
|
azp_i32 = azp_aq_i8.to(dtype=torch.int32)
|
|
func_bias = bias if use_bias else None
|
|
|
|
if azp_per_token:
|
|
out = ops.cutlass_scaled_mm_azp(aq_i8, bq_i8, scale_a, scale_b,
|
|
out_dtype, azp_adj_i32, azp_i32,
|
|
func_bias)
|
|
else:
|
|
azp_with_adj_i32 = azp_i32 * azp_adj_i32
|
|
out = ops.cutlass_scaled_mm_azp(aq_i8, bq_i8, scale_a, scale_b,
|
|
out_dtype, azp_with_adj_i32, None,
|
|
func_bias)
|
|
|
|
# bfloat16 precision is 7-bit mantissa -> 2^-8 ~ 0.4%
|
|
# float16 precision is 10-bit mantissa -> 2^-11 ~ 0.05%
|
|
rtol = 1e-2 if out_dtype == torch.bfloat16 else 1e-3
|
|
atol = 1e-3
|
|
torch.testing.assert_close(out, baseline_dq, rtol=rtol, atol=atol)
|
|
torch.testing.assert_close(out, baseline_q, rtol=rtol, atol=atol)
|
|
|
|
if azp_per_token:
|
|
opcheck(torch.ops._C.cutlass_scaled_mm_azp,
|
|
(out, aq_i8, bq_i8, scale_a, scale_b, azp_adj_i32, azp_i32,
|
|
func_bias))
|
|
else:
|
|
opcheck(torch.ops._C.cutlass_scaled_mm_azp,
|
|
(out, aq_i8, bq_i8, scale_a, scale_b, azp_with_adj_i32, None,
|
|
func_bias))
|
|
|
|
|
|
# Test working with a subset of A and B
|
|
def test_cutlass_subset():
|
|
big_m, big_n, big_k = 1024, 1024, 1024
|
|
m, n, k = 512, 512, 512
|
|
|
|
whole_a = to_int8(torch.randn((big_m, big_k), device="cuda") * 5)
|
|
whole_b = to_int8(torch.randn((big_n, big_k), device="cuda").t() * 5)
|
|
a = whole_a[0:m, 0:k]
|
|
b = whole_b[0:k, 0:n]
|
|
|
|
scale_a = torch.randn((1, 1), device="cuda", dtype=torch.float32) / 10
|
|
scale_b = torch.randn((1, 1), device="cuda", dtype=torch.float32) / 10
|
|
|
|
out = ops.cutlass_scaled_mm(a,
|
|
b,
|
|
scale_a,
|
|
scale_b,
|
|
out_dtype=torch.bfloat16)
|
|
baseline = baseline_scaled_mm(a,
|
|
b,
|
|
scale_a,
|
|
scale_b,
|
|
out_dtype=torch.bfloat16)
|
|
|
|
torch.testing.assert_close(out, baseline, rtol=1e-1, atol=1e0)
|
|
|
|
|
|
# Test to make sure cuda graphs work
|
|
class CutlassLayer(torch.nn.Module):
|
|
|
|
def __init__(self, b, scale_a, scale_b, out_dtype):
|
|
super().__init__()
|
|
self.b = b
|
|
self.scale_a = scale_a
|
|
self.scale_b = scale_b
|
|
self.out_dtype = out_dtype
|
|
|
|
def forward(self, a):
|
|
return ops.cutlass_scaled_mm(a, self.b, self.scale_a, self.scale_b,
|
|
self.out_dtype)
|
|
|
|
|
|
@pytest.mark.parametrize("per_act_token", [True, False])
|
|
@pytest.mark.parametrize("per_out_ch", [True, False])
|
|
def test_cutlass_cuda_graph(per_act_token: bool, per_out_ch: bool):
|
|
m, n, k = 512, 512, 512
|
|
|
|
a = to_int8(torch.randn((m, k), device="cuda"))
|
|
b = to_int8(torch.randn((n, k), device="cuda").t())
|
|
|
|
m_a_scales = m if per_act_token else 1
|
|
n_b_scales = n if per_out_ch else 1
|
|
|
|
scale_a = (torch.randn(
|
|
(m_a_scales, 1), device="cuda", dtype=torch.float32) / 10)
|
|
scale_b = (torch.randn(
|
|
(1, n_b_scales), device="cuda", dtype=torch.float32) / 10)
|
|
|
|
# Construct a trivial model with a single layer that calls a CUTLASS kernel
|
|
model = CutlassLayer(b, scale_a, scale_b, torch.bfloat16)
|
|
|
|
# Run the model with a cuda graph
|
|
stream = torch.cuda.Stream()
|
|
with torch.cuda.stream(stream):
|
|
g = torch.cuda.CUDAGraph()
|
|
with torch.cuda.graph(g):
|
|
out = model(a)
|
|
out.zero_()
|
|
g.replay()
|
|
|
|
baseline = torch.mm(scale_a * a.to(dtype=torch.float32),
|
|
scale_b * b.to(dtype=torch.float32)).to(torch.bfloat16)
|
|
torch.testing.assert_close(out, baseline, rtol=1e-1, atol=1e0)
|
|
|
|
|
|
def test_cutlass_support_opcheck():
|
|
opcheck(torch.ops._C.cutlass_scaled_mm_supports_fp8, (capability, ))
|