vllm/tests/kernels/test_cascade_flash_attn.py
Russell Bryant e489ad7a21
[Misc] Add SPDX-License-Identifier headers to python source files (#12628)
- **Add SPDX license headers to python source files**
- **Check for SPDX headers using pre-commit**

commit 9d7ef44c3cfb72ca4c32e1c677d99259d10d4745
Author: Russell Bryant <rbryant@redhat.com>
Date:   Fri Jan 31 14:18:24 2025 -0500

    Add SPDX license headers to python source files
    
This commit adds SPDX license headers to python source files as
recommended to
the project by the Linux Foundation. These headers provide a concise way
that is
both human and machine readable for communicating license information
for each
source file. It helps avoid any ambiguity about the license of the code
and can
    also be easily used by tools to help manage license compliance.
    
The Linux Foundation runs license scans against the codebase to help
ensure
    we are in compliance with the licenses of the code we use, including
dependencies. Having these headers in place helps that tool do its job.
    
    More information can be found on the SPDX site:
    
    - https://spdx.dev/learn/handling-license-info/
    
    Signed-off-by: Russell Bryant <rbryant@redhat.com>

commit 5a1cf1cb3b80759131c73f6a9dddebccac039dea
Author: Russell Bryant <rbryant@redhat.com>
Date:   Fri Jan 31 14:36:32 2025 -0500

    Check for SPDX headers using pre-commit
    
    Signed-off-by: Russell Bryant <rbryant@redhat.com>

---------

Signed-off-by: Russell Bryant <rbryant@redhat.com>
2025-02-02 11:58:18 -08:00

190 lines
6.7 KiB
Python
Executable File

# SPDX-License-Identifier: Apache-2.0
from typing import List, Optional, Tuple
import pytest
import torch
from vllm.platforms import current_platform
from vllm.v1.attention.backends.flash_attn import (cascade_attention,
merge_attn_states)
from vllm.vllm_flash_attn import (fa_version_unsupported_reason,
flash_attn_varlen_func,
is_fa_version_supported)
NUM_HEADS = [(4, 4), (8, 2), (16, 2)]
HEAD_SIZES = [128, 192, 256]
BLOCK_SIZES = [16]
DTYPES = [torch.float16, torch.bfloat16]
@pytest.mark.parametrize("num_tokens", [1, 39, 16912])
@pytest.mark.parametrize("num_heads", NUM_HEADS)
@pytest.mark.parametrize("head_size", HEAD_SIZES)
@pytest.mark.parametrize("dtype", DTYPES)
@torch.inference_mode()
def test_merge_kernel(
num_tokens: int,
num_heads: Tuple[int, int],
head_size: int,
dtype: torch.dtype,
):
torch.set_default_device("cuda")
current_platform.seed_everything(0)
num_query_heads = num_heads[0]
num_kv_heads = num_heads[1]
assert num_query_heads % num_kv_heads == 0
# Prepare inputs.
prefix_output = torch.randn(num_tokens,
num_query_heads,
head_size,
dtype=dtype)
suffix_output = torch.randn(num_tokens,
num_query_heads,
head_size,
dtype=dtype)
prefix_lse = torch.randn(num_query_heads, num_tokens, dtype=torch.float32)
suffix_lse = torch.randn(num_query_heads, num_tokens, dtype=torch.float32)
# Run the kernel.
output = torch.empty(num_tokens, num_query_heads, head_size, dtype=dtype)
merge_attn_states(output, prefix_output, prefix_lse, suffix_output,
suffix_lse)
# Reference implementation.
max_lse = torch.maximum(prefix_lse, suffix_lse)
p_lse = torch.exp(prefix_lse - max_lse)
s_lse = torch.exp(suffix_lse - max_lse)
p_scale = p_lse / (p_lse + s_lse)
s_scale = s_lse / (p_lse + s_lse)
p_scale = p_scale.transpose(0, 1).unsqueeze(2)
s_scale = s_scale.transpose(0, 1).unsqueeze(2)
ref_output = p_scale * prefix_output + s_scale * suffix_output
ref_output = ref_output.to(dtype)
# Compare the results.
torch.testing.assert_close(output, ref_output, atol=1e-2, rtol=1e-2)
CASES = [
# Case 1. A general case.
([(129, 871), (18, 280), (37, 988), (1023, 2304), (1, 257)], 256),
# Case 2. Flash-decoding case.
([(1, 1023), (1, 879), (1, 778), (1, 1777)] * 100, 512),
]
@pytest.mark.parametrize("seq_lens_and_common_prefix", CASES)
@pytest.mark.parametrize("num_heads", NUM_HEADS)
@pytest.mark.parametrize("head_size", HEAD_SIZES)
@pytest.mark.parametrize("dtype", DTYPES)
@pytest.mark.parametrize("block_size", BLOCK_SIZES)
@pytest.mark.parametrize("soft_cap", [None, 50])
@pytest.mark.parametrize("num_blocks", [2048])
@pytest.mark.parametrize("fa_version", [2, 3])
@torch.inference_mode()
def test_cascade(
seq_lens_and_common_prefix: Tuple[List[Tuple[int, int]], int],
num_heads: Tuple[int, int],
head_size: int,
dtype: torch.dtype,
block_size: int,
soft_cap: Optional[float],
num_blocks: int,
fa_version: int,
) -> None:
torch.set_default_device("cuda")
if not is_fa_version_supported(fa_version):
pytest.skip(f"Flash attention version {fa_version} not supported due "
f"to: \"{fa_version_unsupported_reason(fa_version)}\"")
current_platform.seed_everything(0)
window_size = (-1, -1)
scale = head_size**-0.5
num_query_heads = num_heads[0]
num_kv_heads = num_heads[1]
assert num_query_heads % num_kv_heads == 0
key_cache = torch.randn(num_blocks,
block_size,
num_kv_heads,
head_size,
dtype=dtype)
value_cache = torch.randn_like(key_cache)
seq_lens, common_prefix_len = seq_lens_and_common_prefix
num_seqs = len(seq_lens)
query_lens = [x[0] for x in seq_lens]
kv_lens = [x[1] for x in seq_lens]
max_query_len = max(query_lens)
max_kv_len = max(kv_lens)
total_num_query_tokens = sum(query_lens)
query = torch.randn(total_num_query_tokens,
num_query_heads,
head_size,
dtype=dtype)
cu_query_lens = torch.tensor([0] + query_lens,
dtype=torch.int32).cumsum(dim=0,
dtype=torch.int32)
kv_lens_tensor = torch.tensor(kv_lens, dtype=torch.int32)
max_num_blocks_per_seq = (max_kv_len + block_size - 1) // block_size
block_tables = torch.randint(0,
num_blocks,
(num_seqs, max_num_blocks_per_seq),
dtype=torch.int32)
assert common_prefix_len > 0
assert common_prefix_len % block_size == 0
num_common_kv_blocks = common_prefix_len // block_size
# Make sure the first `num_common_kv_blocks` blocks are the same.
block_tables[:, :num_common_kv_blocks] = \
block_tables[0, :num_common_kv_blocks]
# Run the regular attention.
ref_output = flash_attn_varlen_func(
q=query,
k=key_cache,
v=value_cache,
cu_seqlens_q=cu_query_lens,
seqused_k=kv_lens_tensor,
max_seqlen_q=max_query_len,
max_seqlen_k=max_kv_len,
softmax_scale=scale,
causal=True,
window_size=window_size,
block_table=block_tables,
softcap=soft_cap if soft_cap is not None else 0,
)
# Run cascade attention.
assert all(common_prefix_len < kv_len for kv_len in kv_lens)
cu_prefix_query_lens = torch.tensor([0, total_num_query_tokens],
dtype=torch.int32)
prefix_kv_lens = torch.tensor([common_prefix_len], dtype=torch.int32)
suffix_kv_lens = kv_lens_tensor - common_prefix_len
output = torch.empty_like(query)
cascade_attention(
output=output,
query=query,
key_cache=key_cache,
value_cache=value_cache,
cu_query_lens=cu_query_lens,
max_query_len=max_query_len,
cu_prefix_query_lens=cu_prefix_query_lens,
prefix_kv_lens=prefix_kv_lens,
suffix_kv_lens=suffix_kv_lens,
max_kv_len=max_kv_len,
softmax_scale=scale,
alibi_slopes=None,
sliding_window=window_size,
logits_soft_cap=soft_cap if soft_cap is not None else 0,
block_table=block_tables,
common_prefix_len=common_prefix_len,
fa_version=fa_version,
)
# Compare the results.
torch.testing.assert_close(output, ref_output, atol=1e-2, rtol=1e-2)