
- **Add SPDX license headers to python source files** - **Check for SPDX headers using pre-commit** commit 9d7ef44c3cfb72ca4c32e1c677d99259d10d4745 Author: Russell Bryant <rbryant@redhat.com> Date: Fri Jan 31 14:18:24 2025 -0500 Add SPDX license headers to python source files This commit adds SPDX license headers to python source files as recommended to the project by the Linux Foundation. These headers provide a concise way that is both human and machine readable for communicating license information for each source file. It helps avoid any ambiguity about the license of the code and can also be easily used by tools to help manage license compliance. The Linux Foundation runs license scans against the codebase to help ensure we are in compliance with the licenses of the code we use, including dependencies. Having these headers in place helps that tool do its job. More information can be found on the SPDX site: - https://spdx.dev/learn/handling-license-info/ Signed-off-by: Russell Bryant <rbryant@redhat.com> commit 5a1cf1cb3b80759131c73f6a9dddebccac039dea Author: Russell Bryant <rbryant@redhat.com> Date: Fri Jan 31 14:36:32 2025 -0500 Check for SPDX headers using pre-commit Signed-off-by: Russell Bryant <rbryant@redhat.com> --------- Signed-off-by: Russell Bryant <rbryant@redhat.com>
442 lines
15 KiB
Python
442 lines
15 KiB
Python
# SPDX-License-Identifier: Apache-2.0
|
|
|
|
import random
|
|
from typing import List, Optional, Tuple
|
|
|
|
import pytest
|
|
import torch
|
|
|
|
from vllm import _custom_ops as ops
|
|
from vllm.attention.ops.blocksparse_attention.interface import (
|
|
LocalStridedBlockSparseAttn)
|
|
from vllm.platforms import current_platform
|
|
from vllm.utils import get_max_shared_memory_bytes
|
|
|
|
from .allclose_default import get_default_atol, get_default_rtol
|
|
|
|
FLOAT32_BYTES = torch.finfo(torch.float).bits // 8
|
|
# This will change depending on the compute capability.
|
|
# - 512 as a buffer
|
|
MAX_SEQ_LEN = get_max_shared_memory_bytes() // FLOAT32_BYTES - 512
|
|
# MAX_SEQ_LEN = 2771
|
|
|
|
# There may not be enough gpu memory due to large NUM_BLOCKS.
|
|
# Reduce NUM_BLOCKS when it happens.
|
|
NUM_BLOCKS = 4321 # Arbitrary values for testing
|
|
PARTITION_SIZE = 512
|
|
DTYPES = [torch.half, torch.bfloat16]
|
|
NUM_GEN_SEQS = [3] # Arbitrary values for testing
|
|
NUM_PREFILL_SEQS = [3] # Arbitrary values for testing
|
|
NUM_HEADS = [(40, 40)] # Arbitrary values for testing
|
|
|
|
HEAD_SIZES = [64, 112]
|
|
BLOCK_SIZES = [16]
|
|
USE_ALIBI = [False, True]
|
|
KV_CACHE_DTYPE = ["auto", "fp8"]
|
|
SEEDS = [0]
|
|
CUDA_DEVICES = ['cuda:0']
|
|
BLOCKSPARSE_LOCAL_BLOCKS = [16]
|
|
BLOCKSPARSE_VERT_STRIDES = [8]
|
|
|
|
BLOCKSPARSE_BLOCK_SIZES = [64]
|
|
BLOCKSPARSE_HEADS_SLIDINGS = [2, -1]
|
|
BLOCKSPARSE_HOMO_HEADS = [True, False]
|
|
|
|
|
|
def ref_masked_attention(
|
|
query: torch.Tensor,
|
|
key: torch.Tensor,
|
|
value: torch.Tensor,
|
|
scale: float,
|
|
attn_mask: Optional[torch.Tensor] = None,
|
|
) -> torch.Tensor:
|
|
attn_weights = scale * torch.einsum("qhd,khd->hqk", query, key).float()
|
|
if attn_mask is not None:
|
|
attn_weights = attn_weights + attn_mask.float()
|
|
attn_weights = torch.softmax(attn_weights, dim=-1).to(value.dtype)
|
|
out = torch.einsum("hqk,khd->qhd", attn_weights, value)
|
|
return out
|
|
|
|
|
|
def ref_single_query_cached_kv_attention(
|
|
output: torch.Tensor,
|
|
query: torch.Tensor,
|
|
num_queries_per_kv: int,
|
|
key_cache: torch.Tensor,
|
|
value_cache: torch.Tensor,
|
|
block_tables: torch.Tensor,
|
|
seq_lens: torch.Tensor,
|
|
scale: float,
|
|
alibi_slopes: Optional[torch.Tensor],
|
|
tp_rank: int = 0,
|
|
blocksparse_local_blocks: int = 0,
|
|
blocksparse_vert_stride: int = 1,
|
|
blocksparse_block_size: int = 64,
|
|
blocksparse_head_sliding_step: int = 0,
|
|
) -> None:
|
|
num_query_heads = query.shape[1]
|
|
num_kv_heads = value_cache.shape[1]
|
|
head_size = value_cache.shape[2]
|
|
block_size = value_cache.shape[3]
|
|
num_seqs = query.shape[0]
|
|
|
|
block_tables_lst = block_tables.cpu().tolist()
|
|
seq_lens_lst = seq_lens.cpu().tolist()
|
|
for i in range(num_seqs):
|
|
q = query[i].unsqueeze(0)
|
|
block_table = block_tables_lst[i]
|
|
seq_len = int(seq_lens_lst[i])
|
|
|
|
keys_lst: List[torch.Tensor] = []
|
|
values_lst: List[torch.Tensor] = []
|
|
for j in range(seq_len):
|
|
block_number = int(block_table[j // block_size])
|
|
block_offset = j % block_size
|
|
|
|
k = key_cache[block_number, :, :, block_offset, :]
|
|
k = k.reshape(num_kv_heads, head_size)
|
|
keys_lst.append(k)
|
|
|
|
v = value_cache[block_number, :, :, block_offset]
|
|
values_lst.append(v)
|
|
keys = torch.stack(keys_lst, dim=0)
|
|
values = torch.stack(values_lst, dim=0)
|
|
if num_queries_per_kv > 1:
|
|
# Handle MQA and GQA
|
|
keys = torch.repeat_interleave(keys, num_queries_per_kv, dim=1)
|
|
values = torch.repeat_interleave(values, num_queries_per_kv, dim=1)
|
|
|
|
alibi_bias = None
|
|
if alibi_slopes is not None:
|
|
# Create the ALiBi bias used in the paged attention kernel.
|
|
position_ids = torch.arange(seq_len).int()
|
|
alibi_bias = (position_ids - seq_len + 1).float()
|
|
alibi_bias = alibi_slopes.view(-1, 1, 1) * alibi_bias.view(
|
|
1, 1, -1)
|
|
|
|
if blocksparse_vert_stride >= 1:
|
|
bsize = blocksparse_block_size
|
|
hsliding = blocksparse_head_sliding_step
|
|
vert = blocksparse_vert_stride
|
|
locals = blocksparse_local_blocks
|
|
qb = (seq_len - 1) // bsize
|
|
attn_mask = q.new_zeros(
|
|
(num_query_heads, 1, seq_len)).float() - torch.inf
|
|
for h in range(num_query_heads):
|
|
if hsliding >= 0: # slide with q heads
|
|
bs_offset = (tp_rank * num_query_heads + h) * hsliding + 1
|
|
else: # slide with kv heads
|
|
bs_offset = (tp_rank * num_kv_heads +
|
|
h // num_queries_per_kv) * (-hsliding) + 1
|
|
for kb in range(qb + 1):
|
|
kj = kb * bsize
|
|
if (qb - kb) < locals or \
|
|
(kb + bs_offset) % vert == 0:
|
|
attn_mask[h, 0, kj:min(kj + bsize, seq_len)] = 0
|
|
if alibi_bias is not None:
|
|
attn_mask += alibi_bias
|
|
else:
|
|
attn_mask = alibi_bias
|
|
|
|
out = ref_masked_attention(q, keys, values, scale, attn_mask=attn_mask)
|
|
out = out.view(num_query_heads, head_size)
|
|
output[i].copy_(out, non_blocking=True)
|
|
|
|
|
|
@pytest.mark.parametrize("version", ["v1", "v2"])
|
|
@pytest.mark.parametrize("num_seqs", NUM_GEN_SEQS)
|
|
@pytest.mark.parametrize("num_heads", NUM_HEADS)
|
|
@pytest.mark.parametrize("head_size", HEAD_SIZES)
|
|
@pytest.mark.parametrize("use_alibi", USE_ALIBI)
|
|
@pytest.mark.parametrize("block_size", BLOCK_SIZES)
|
|
@pytest.mark.parametrize("dtype", DTYPES)
|
|
@pytest.mark.parametrize("kv_cache_dtype", KV_CACHE_DTYPE)
|
|
@pytest.mark.parametrize("seed", SEEDS)
|
|
@pytest.mark.parametrize("device", CUDA_DEVICES)
|
|
@pytest.mark.parametrize("blocksparse_local_blocks", BLOCKSPARSE_LOCAL_BLOCKS)
|
|
@pytest.mark.parametrize("blocksparse_vert_stride", BLOCKSPARSE_VERT_STRIDES)
|
|
@pytest.mark.parametrize("blocksparse_block_size", BLOCKSPARSE_BLOCK_SIZES)
|
|
@pytest.mark.parametrize("blocksparse_head_sliding_step",
|
|
BLOCKSPARSE_HEADS_SLIDINGS)
|
|
def test_paged_attention(
|
|
kv_cache_factory,
|
|
version: str,
|
|
num_seqs: int,
|
|
num_heads: Tuple[int, int],
|
|
head_size: int,
|
|
use_alibi: bool,
|
|
block_size: int,
|
|
dtype: torch.dtype,
|
|
kv_cache_dtype: str,
|
|
seed: int,
|
|
device: str,
|
|
blocksparse_local_blocks: int,
|
|
blocksparse_vert_stride: int,
|
|
blocksparse_block_size: int,
|
|
blocksparse_head_sliding_step: int,
|
|
) -> None:
|
|
current_platform.seed_everything(seed)
|
|
torch.set_default_device(device)
|
|
scale = float(1.0 / (head_size**0.5))
|
|
num_query_heads, num_kv_heads = num_heads
|
|
query = torch.empty(num_seqs, num_query_heads, head_size, dtype=dtype)
|
|
query.uniform_(-scale, scale)
|
|
|
|
assert num_query_heads % num_kv_heads == 0
|
|
num_queries_per_kv = num_query_heads // num_kv_heads
|
|
alibi_slopes = None
|
|
if use_alibi:
|
|
alibi_slopes = torch.rand(num_query_heads, dtype=torch.float)
|
|
|
|
seq_lens = [random.randint(1, MAX_SEQ_LEN) for _ in range(num_seqs)]
|
|
seq_lens[-1] = MAX_SEQ_LEN
|
|
max_seq_len = max(seq_lens)
|
|
seq_lens = torch.tensor(seq_lens, dtype=torch.int)
|
|
|
|
# Create the block tables.
|
|
max_num_blocks_per_seq = (max_seq_len + block_size - 1) // block_size
|
|
block_tables = []
|
|
for _ in range(num_seqs):
|
|
block_table = [
|
|
random.randint(0, NUM_BLOCKS - 1)
|
|
for _ in range(max_num_blocks_per_seq)
|
|
]
|
|
block_tables.append(block_table)
|
|
block_tables = torch.tensor(block_tables, dtype=torch.int)
|
|
|
|
# Create the KV caches.
|
|
key_caches, value_caches = kv_cache_factory(NUM_BLOCKS, block_size, 1,
|
|
num_kv_heads, head_size,
|
|
kv_cache_dtype, dtype, seed,
|
|
device)
|
|
key_cache, value_cache = key_caches[0], value_caches[0]
|
|
|
|
# Using default kv_scale
|
|
k_scale = v_scale = torch.tensor(1.0, dtype=torch.float32, device=device)
|
|
tp_rank = 0
|
|
|
|
# Call the paged attention kernel.
|
|
output = torch.empty_like(query)
|
|
if version == "v1":
|
|
ops.paged_attention_v1(
|
|
output,
|
|
query,
|
|
key_cache,
|
|
value_cache,
|
|
num_kv_heads,
|
|
scale,
|
|
block_tables,
|
|
seq_lens,
|
|
block_size,
|
|
max_seq_len,
|
|
alibi_slopes,
|
|
kv_cache_dtype,
|
|
k_scale,
|
|
v_scale,
|
|
tp_rank=tp_rank,
|
|
blocksparse_local_blocks=blocksparse_local_blocks,
|
|
blocksparse_vert_stride=blocksparse_vert_stride,
|
|
blocksparse_block_size=blocksparse_block_size,
|
|
blocksparse_head_sliding_step=blocksparse_head_sliding_step,
|
|
)
|
|
elif version == "v2":
|
|
num_partitions = ((max_seq_len + PARTITION_SIZE - 1) // PARTITION_SIZE)
|
|
assert PARTITION_SIZE % block_size == 0
|
|
num_seqs, num_heads, head_size = output.shape
|
|
tmp_output = torch.empty(
|
|
size=(num_seqs, num_heads, num_partitions, head_size),
|
|
dtype=output.dtype,
|
|
)
|
|
exp_sums = torch.empty(
|
|
size=(num_seqs, num_heads, num_partitions),
|
|
dtype=torch.float32,
|
|
)
|
|
max_logits = torch.empty_like(exp_sums)
|
|
ops.paged_attention_v2(
|
|
output,
|
|
exp_sums,
|
|
max_logits,
|
|
tmp_output,
|
|
query,
|
|
key_cache,
|
|
value_cache,
|
|
num_kv_heads,
|
|
scale,
|
|
block_tables,
|
|
seq_lens,
|
|
block_size,
|
|
max_seq_len,
|
|
alibi_slopes,
|
|
kv_cache_dtype,
|
|
k_scale,
|
|
v_scale,
|
|
tp_rank=tp_rank,
|
|
blocksparse_local_blocks=blocksparse_local_blocks,
|
|
blocksparse_vert_stride=blocksparse_vert_stride,
|
|
blocksparse_block_size=blocksparse_block_size,
|
|
blocksparse_head_sliding_step=blocksparse_head_sliding_step,
|
|
)
|
|
else:
|
|
raise AssertionError(f"Unknown version: {version}")
|
|
|
|
# Run the reference implementation.
|
|
if kv_cache_dtype == "fp8":
|
|
# Convert cache data back to dtype.
|
|
x = 16 // torch.tensor([], dtype=dtype).element_size()
|
|
key_cache_shape = (NUM_BLOCKS, num_kv_heads, head_size // x,
|
|
block_size, x)
|
|
dequantized_key_cache = torch.empty(size=key_cache_shape,
|
|
dtype=dtype,
|
|
device=device)
|
|
ops.convert_fp8(dequantized_key_cache, key_cache)
|
|
key_cache = dequantized_key_cache
|
|
|
|
value_cache_shape = value_cache.shape
|
|
dequantized_value_cache = torch.empty(size=value_cache_shape,
|
|
dtype=dtype,
|
|
device=device)
|
|
ops.convert_fp8(dequantized_value_cache, value_cache)
|
|
value_cache = dequantized_value_cache
|
|
|
|
ref_output = torch.empty_like(query)
|
|
ref_single_query_cached_kv_attention(
|
|
ref_output,
|
|
query,
|
|
num_queries_per_kv,
|
|
key_cache,
|
|
value_cache,
|
|
block_tables,
|
|
seq_lens,
|
|
scale,
|
|
alibi_slopes,
|
|
tp_rank,
|
|
blocksparse_local_blocks,
|
|
blocksparse_vert_stride,
|
|
blocksparse_block_size,
|
|
blocksparse_head_sliding_step,
|
|
)
|
|
|
|
# NOTE(woosuk): Due to the kernel-level differences in the two
|
|
# implementations, there is a small numerical difference in the two
|
|
# outputs. Thus, we use a relaxed tolerance for the test.
|
|
atol = get_default_atol(output) if current_platform.is_rocm() else 1e-3
|
|
rtol = get_default_rtol(output) if current_platform.is_rocm() else 1e-5
|
|
|
|
# NOTE(zhaoyang): FP8 KV Cache will introduce quantization error,
|
|
# so we use a relaxed tolerance for the test.
|
|
atol, rtol = 1e-3, 1e-5
|
|
if kv_cache_dtype == "fp8":
|
|
atol, rtol = 1e-2, 1e-5
|
|
torch.testing.assert_close(output, ref_output, atol=atol, rtol=rtol)
|
|
|
|
|
|
def ref_multi_query_kv_attention(
|
|
cu_seq_lens: List[int],
|
|
query: torch.Tensor,
|
|
key: torch.Tensor,
|
|
value: torch.Tensor,
|
|
scale: float,
|
|
dtype: torch.dtype,
|
|
) -> torch.Tensor:
|
|
num_seqs = len(cu_seq_lens) - 1
|
|
ref_outputs = []
|
|
for i in range(num_seqs):
|
|
start_idx = cu_seq_lens[i]
|
|
end_idx = cu_seq_lens[i + 1]
|
|
seq_len = end_idx - start_idx
|
|
|
|
# Create attention mask.
|
|
attn_mask = torch.triu(torch.ones(seq_len, seq_len, dtype=dtype),
|
|
diagonal=1)
|
|
attn_mask = attn_mask * torch.finfo(dtype).min
|
|
attn_mask = attn_mask.to(dtype=dtype)
|
|
|
|
ref_output = ref_masked_attention(
|
|
query[start_idx:end_idx],
|
|
key[start_idx:end_idx],
|
|
value[start_idx:end_idx],
|
|
scale,
|
|
attn_mask=attn_mask,
|
|
)
|
|
ref_outputs.append(ref_output)
|
|
ref_output = torch.cat(ref_outputs, dim=0)
|
|
return ref_output
|
|
|
|
|
|
@pytest.mark.parametrize("num_seqs", NUM_PREFILL_SEQS)
|
|
@pytest.mark.parametrize("num_heads", NUM_HEADS)
|
|
@pytest.mark.parametrize("head_size", HEAD_SIZES)
|
|
@pytest.mark.parametrize("blocksparse_local_blocks", BLOCKSPARSE_LOCAL_BLOCKS)
|
|
@pytest.mark.parametrize("blocksparse_vert_stride", BLOCKSPARSE_VERT_STRIDES)
|
|
@pytest.mark.parametrize("blocksparse_block_size", BLOCKSPARSE_BLOCK_SIZES)
|
|
@pytest.mark.parametrize("blocksparse_homo_heads", BLOCKSPARSE_HOMO_HEADS)
|
|
@pytest.mark.parametrize("dtype", DTYPES)
|
|
@pytest.mark.parametrize("seed", SEEDS)
|
|
@pytest.mark.parametrize("device", CUDA_DEVICES)
|
|
@torch.inference_mode()
|
|
def test_varlen_blocksparse_attention_prefill(
|
|
num_seqs: int,
|
|
num_heads: Tuple[int, int],
|
|
head_size: int,
|
|
blocksparse_local_blocks: int,
|
|
blocksparse_vert_stride: int,
|
|
blocksparse_block_size: int,
|
|
blocksparse_homo_heads: bool,
|
|
dtype: torch.dtype,
|
|
seed: int,
|
|
device: str,
|
|
) -> None:
|
|
current_platform.seed_everything(seed)
|
|
torch.set_default_device(device)
|
|
# MAX_SEQ_LEN sometimes causes OOM in the reference implementation.
|
|
# As the xformers library is already tested with its own tests, we can use
|
|
# a smaller MAX_SEQ_LEN here.
|
|
max_len = min(MAX_SEQ_LEN, 4096)
|
|
seq_lens = random.sample(range(1, max_len), num_seqs)
|
|
cu_seq_lens = torch.cumsum(torch.tensor([0] + seq_lens), dim=0)
|
|
num_tokens = sum(seq_lens)
|
|
|
|
scale = float(1.0 / (head_size**0.5))
|
|
num_query_heads, num_kv_heads = num_heads
|
|
assert num_query_heads % num_kv_heads == 0
|
|
num_queries_per_kv = num_query_heads // num_kv_heads
|
|
|
|
qkv = torch.empty(num_tokens,
|
|
num_query_heads + 2 * num_kv_heads,
|
|
head_size,
|
|
dtype=dtype)
|
|
qkv.uniform_(-scale, scale)
|
|
query, key, value = qkv.split(
|
|
[num_query_heads, num_kv_heads, num_kv_heads], dim=1)
|
|
|
|
bs_attn_op = LocalStridedBlockSparseAttn(
|
|
num_query_heads,
|
|
max_len,
|
|
local_blocks=blocksparse_local_blocks,
|
|
vert_stride=blocksparse_vert_stride,
|
|
block_size=blocksparse_block_size,
|
|
device=device,
|
|
dtype=dtype,
|
|
homo_head=blocksparse_homo_heads)
|
|
|
|
output = bs_attn_op(query,
|
|
key,
|
|
value,
|
|
cu_seq_lens.to(device),
|
|
sm_scale=scale)
|
|
|
|
if num_queries_per_kv > 1:
|
|
# Handle MQA and GQA
|
|
key = torch.repeat_interleave(key, num_queries_per_kv, dim=1)
|
|
value = torch.repeat_interleave(value, num_queries_per_kv, dim=1)
|
|
|
|
ref_output = ref_multi_query_kv_attention(
|
|
cu_seq_lens.tolist(),
|
|
query,
|
|
key,
|
|
value,
|
|
scale,
|
|
dtype,
|
|
)
|
|
torch.testing.assert_close(output, ref_output, atol=1e-2, rtol=1e-2)
|