
- **Add SPDX license headers to python source files** - **Check for SPDX headers using pre-commit** commit 9d7ef44c3cfb72ca4c32e1c677d99259d10d4745 Author: Russell Bryant <rbryant@redhat.com> Date: Fri Jan 31 14:18:24 2025 -0500 Add SPDX license headers to python source files This commit adds SPDX license headers to python source files as recommended to the project by the Linux Foundation. These headers provide a concise way that is both human and machine readable for communicating license information for each source file. It helps avoid any ambiguity about the license of the code and can also be easily used by tools to help manage license compliance. The Linux Foundation runs license scans against the codebase to help ensure we are in compliance with the licenses of the code we use, including dependencies. Having these headers in place helps that tool do its job. More information can be found on the SPDX site: - https://spdx.dev/learn/handling-license-info/ Signed-off-by: Russell Bryant <rbryant@redhat.com> commit 5a1cf1cb3b80759131c73f6a9dddebccac039dea Author: Russell Bryant <rbryant@redhat.com> Date: Fri Jan 31 14:36:32 2025 -0500 Check for SPDX headers using pre-commit Signed-off-by: Russell Bryant <rbryant@redhat.com> --------- Signed-off-by: Russell Bryant <rbryant@redhat.com>
271 lines
9.7 KiB
Python
271 lines
9.7 KiB
Python
# SPDX-License-Identifier: Apache-2.0
|
|
|
|
# Adapted from https://github.com/sgl-project/sglang/pull/2575
|
|
import itertools
|
|
|
|
import pytest
|
|
import torch
|
|
|
|
from vllm.model_executor.layers.activation import SiluAndMul
|
|
from vllm.model_executor.layers.fused_moe import fused_moe
|
|
from vllm.model_executor.layers.quantization.utils.fp8_utils import (
|
|
per_token_group_quant_fp8, w8a8_block_fp8_matmul)
|
|
from vllm.platforms import current_platform
|
|
|
|
if current_platform.get_device_capability() < (9, 0):
|
|
pytest.skip("FP8 Triton requires CUDA 9.0 or higher",
|
|
allow_module_level=True)
|
|
|
|
# Test configurations
|
|
DTYPES = [torch.bfloat16] # [torch.half, torch.bfloat16, torch.float32]
|
|
NUM_TOKENS = [7, 83, 2048]
|
|
D = [512, 4096, 5120, 13824]
|
|
GROUP_SIZE = [64, 128, 256, 512]
|
|
M = [1, 7, 83, 512, 2048]
|
|
N = [128, 512, 1024, 4096, 7748, 13824]
|
|
K = [256, 4096, 5120, 3884, 13824]
|
|
# Deepseek-V3's intermediate size 18432, so N is 18432*2/8=4608 at TP8
|
|
# and its hidden size is 7168.
|
|
M_moe = [1, 7, 83, 512, 2048]
|
|
N_moe = [4608] # [128, 4608, 13824]
|
|
K_moe = [7168] # [256, 7168, 13824]
|
|
BLOCK_SIZE = [[128, 128]]
|
|
E = [256] # [8, 24, 128, 256]
|
|
TOP_KS = [1] # [1, 2, 6]
|
|
OUT_DTYPES = [torch.bfloat16] # [torch.float32, torch.half, torch.bfloat16]
|
|
SEEDS = [0]
|
|
|
|
|
|
def native_per_token_group_quant_fp8(x,
|
|
group_size,
|
|
eps=1e-10,
|
|
dtype=torch.float8_e4m3fn):
|
|
"""Function to perform per-token-group quantization on an input tensor
|
|
`x` using native torch."""
|
|
assert x.shape[-1] % group_size == 0, ("the last dimension of `x` cannot "
|
|
"be divisible by `group_size`")
|
|
assert x.is_contiguous(), "`x` is not contiguous"
|
|
|
|
finfo = torch.finfo(dtype)
|
|
fp8_min = finfo.min
|
|
fp8_max = finfo.max
|
|
|
|
x_ = x.reshape(x.numel() // group_size, group_size)
|
|
amax = x_.abs().max(dim=-1,
|
|
keepdim=True)[0].clamp(min=eps).to(torch.float32)
|
|
x_s = amax / fp8_max
|
|
x_q = (x_ / x_s).clamp(min=fp8_min, max=fp8_max).to(dtype)
|
|
x_q = x_q.reshape(x.shape)
|
|
x_s = x_s.reshape(x.shape[:-1] + (x.shape[-1] // group_size, ))
|
|
|
|
return x_q, x_s
|
|
|
|
|
|
def native_w8a8_block_fp8_matmul(A,
|
|
B,
|
|
As,
|
|
Bs,
|
|
block_size,
|
|
output_dtype=torch.float16):
|
|
"""Matrix multiplication with block-wise quantization using native torch."""
|
|
A = A.to(torch.float32)
|
|
B = B.to(torch.float32)
|
|
assert A.shape[-1] == B.shape[-1]
|
|
assert B.ndim == 2 and B.is_contiguous() and Bs.ndim == 2
|
|
assert len(block_size) == 2
|
|
block_n, block_k = block_size[0], block_size[1]
|
|
assert (A.shape[-1] + block_k - 1) // block_k == As.shape[-1]
|
|
assert A.shape[:-1] == As.shape[:-1]
|
|
|
|
M = A.numel() // A.shape[-1]
|
|
N, K = B.shape
|
|
origin_C_shape = A.shape[:-1] + (N, )
|
|
A = A.reshape(M, A.shape[-1])
|
|
As = As.reshape(M, As.shape[-1])
|
|
n_tiles = (N + block_n - 1) // block_n
|
|
k_tiles = (K + block_k - 1) // block_k
|
|
assert n_tiles == Bs.shape[0]
|
|
assert k_tiles == Bs.shape[1]
|
|
|
|
C_shape = (M, N)
|
|
C = torch.zeros(C_shape, dtype=torch.float32, device=A.device)
|
|
|
|
A_tiles = [
|
|
A[:, i * block_k:min((i + 1) * block_k, K)] for i in range(k_tiles)
|
|
]
|
|
B_tiles = [[
|
|
B[
|
|
j * block_n:min((j + 1) * block_n, N),
|
|
i * block_k:min((i + 1) * block_k, K),
|
|
] for i in range(k_tiles)
|
|
] for j in range(n_tiles)]
|
|
C_tiles = [
|
|
C[:, j * block_n:min((j + 1) * block_n, N)] for j in range(n_tiles)
|
|
]
|
|
As_tiles = [As[:, i:i + 1] for i in range(k_tiles)]
|
|
|
|
for i in range(k_tiles):
|
|
for j in range(n_tiles):
|
|
a = A_tiles[i]
|
|
b = B_tiles[j][i]
|
|
c = C_tiles[j]
|
|
s = As_tiles[i] * Bs[j][i]
|
|
c[:, :] += torch.matmul(a, b.t()) * s
|
|
|
|
C = C.reshape(origin_C_shape).to(output_dtype)
|
|
return C
|
|
|
|
|
|
def torch_w8a8_block_fp8_moe(a, w1, w2, w1_s, w2_s, score, topk, block_shape):
|
|
"""Fused moe with block-wise quantization using native torch."""
|
|
B, D = a.shape
|
|
a = a.view(B, -1, D).repeat(1, topk, 1).reshape(-1, D)
|
|
out = torch.zeros(B * topk, w2.shape[1], dtype=a.dtype, device=a.device)
|
|
score = torch.softmax(score, dim=-1, dtype=torch.float32)
|
|
topk_weight, topk_ids = torch.topk(score, topk)
|
|
topk_weight = topk_weight.view(-1)
|
|
topk_ids = topk_ids.view(-1)
|
|
|
|
_, block_k = block_shape[0], block_shape[1]
|
|
a_q, a_s = native_per_token_group_quant_fp8(a, block_k)
|
|
a_q = a_q.to(torch.float32)
|
|
for i in range(w1.shape[0]):
|
|
mask = topk_ids == i
|
|
if mask.sum():
|
|
inter_out = native_w8a8_block_fp8_matmul(a_q[mask],
|
|
w1[i],
|
|
a_s[mask],
|
|
w1_s[i],
|
|
block_shape,
|
|
output_dtype=a.dtype)
|
|
act_out = SiluAndMul().forward_native(inter_out)
|
|
act_out_q, act_out_s = native_per_token_group_quant_fp8(
|
|
act_out, block_k)
|
|
act_out = act_out.to(torch.float32)
|
|
out[mask] = native_w8a8_block_fp8_matmul(act_out_q,
|
|
w2[i],
|
|
act_out_s,
|
|
w2_s[i],
|
|
block_shape,
|
|
output_dtype=a.dtype)
|
|
return (out.view(B, -1, w2.shape[1]) *
|
|
topk_weight.view(B, -1, 1).to(out.dtype)).sum(dim=1)
|
|
|
|
|
|
# Skip all tests if CUDA is not available
|
|
pytest.importorskip("torch.cuda")
|
|
|
|
|
|
@pytest.fixture(autouse=True)
|
|
def setup_cuda():
|
|
torch.set_default_device("cuda")
|
|
|
|
|
|
@pytest.mark.parametrize(
|
|
"num_tokens,d,dtype,group_size,seed",
|
|
itertools.product(NUM_TOKENS, D, DTYPES, GROUP_SIZE, SEEDS))
|
|
@torch.inference_mode()
|
|
def test_per_token_group_quant_fp8(num_tokens, d, dtype, group_size, seed):
|
|
torch.manual_seed(seed)
|
|
x = torch.rand(num_tokens, d, dtype=dtype)
|
|
|
|
ref_out, ref_scale = native_per_token_group_quant_fp8(x, group_size)
|
|
out, scale = per_token_group_quant_fp8(x, group_size)
|
|
|
|
assert torch.allclose(out.to(torch.float32),
|
|
ref_out.to(torch.float32),
|
|
rtol=0.15)
|
|
assert torch.allclose(scale, ref_scale)
|
|
|
|
|
|
@pytest.mark.parametrize(
|
|
"M,N,K,block_size,out_dtype,seed",
|
|
itertools.product(M, N, K, BLOCK_SIZE, OUT_DTYPES, SEEDS))
|
|
@torch.inference_mode()
|
|
def test_w8a8_block_fp8_matmul(M, N, K, block_size, out_dtype, seed):
|
|
torch.manual_seed(seed)
|
|
factor_for_scale = 1e-2
|
|
fp8_info = torch.finfo(torch.float8_e4m3fn)
|
|
fp8_max, fp8_min = fp8_info.max, fp8_info.min
|
|
|
|
A_fp32 = (torch.rand(M, K, dtype=torch.float32) - 0.5) * 2 * fp8_max
|
|
A_fp8 = A_fp32.clamp(min=fp8_min, max=fp8_max).to(torch.float8_e4m3fn)
|
|
|
|
B_fp32 = (torch.rand(N, K, dtype=torch.float32) - 0.5) * 2 * fp8_max
|
|
B_fp8 = B_fp32.clamp(min=fp8_min, max=fp8_max).to(torch.float8_e4m3fn)
|
|
|
|
block_n, block_k = block_size[0], block_size[1]
|
|
n_tiles = (N + block_n - 1) // block_n
|
|
k_tiles = (K + block_k - 1) // block_k
|
|
|
|
As = torch.rand(M, k_tiles, dtype=torch.float32) * factor_for_scale
|
|
Bs = torch.rand(n_tiles, k_tiles, dtype=torch.float32) * factor_for_scale
|
|
|
|
ref_out = native_w8a8_block_fp8_matmul(A_fp8, B_fp8, As, Bs, block_size,
|
|
out_dtype)
|
|
out = w8a8_block_fp8_matmul(A_fp8, B_fp8, As, Bs, block_size, out_dtype)
|
|
|
|
rel_diff = (torch.mean(
|
|
torch.abs(out.to(torch.float32) - ref_out.to(torch.float32))) /
|
|
torch.mean(torch.abs(ref_out.to(torch.float32))))
|
|
assert rel_diff < 0.001
|
|
|
|
|
|
@pytest.mark.parametrize(
|
|
"M,N,K,E,topk,block_size,dtype,seed",
|
|
itertools.product(M_moe, N_moe, K_moe, E, TOP_KS, BLOCK_SIZE, DTYPES,
|
|
SEEDS))
|
|
@torch.inference_mode()
|
|
def test_w8a8_block_fp8_fused_moe(M, N, K, E, topk, block_size, dtype, seed):
|
|
torch.manual_seed(seed)
|
|
factor_for_scale = 1e-2
|
|
fp8_info = torch.finfo(torch.float8_e4m3fn)
|
|
fp8_max, fp8_min = fp8_info.max, fp8_info.min
|
|
|
|
a = torch.randn((M, K), dtype=dtype) / 10
|
|
|
|
w1_bf16 = (torch.rand(
|
|
(E, 2 * N, K), dtype=torch.bfloat16) - 0.5) * 2 * fp8_max
|
|
w1 = w1_bf16.clamp(min=fp8_min, max=fp8_max).to(torch.float8_e4m3fn)
|
|
del w1_bf16
|
|
|
|
w2_bf16 = (torch.rand((E, K, N), dtype=torch.bfloat16) - 0.5) * 2 * fp8_max
|
|
w2 = w2_bf16.clamp(min=fp8_min, max=fp8_max).to(torch.float8_e4m3fn)
|
|
del w2_bf16
|
|
|
|
block_n, block_k = block_size[0], block_size[1]
|
|
n_tiles_w1 = (2 * N + block_n - 1) // block_n
|
|
n_tiles_w2 = (K + block_n - 1) // block_n
|
|
k_tiles_w1 = (K + block_k - 1) // block_k
|
|
k_tiles_w2 = (N + block_k - 1) // block_k
|
|
|
|
w1_s = torch.rand(
|
|
(E, n_tiles_w1, k_tiles_w1), dtype=torch.float32) * factor_for_scale
|
|
w2_s = torch.rand(
|
|
(E, n_tiles_w2, k_tiles_w2), dtype=torch.float32) * factor_for_scale
|
|
|
|
score = torch.randn((M, E), dtype=dtype)
|
|
|
|
out = fused_moe(
|
|
a,
|
|
w1,
|
|
w2,
|
|
score,
|
|
topk,
|
|
renormalize=False,
|
|
use_fp8_w8a8=True,
|
|
w1_scale=w1_s,
|
|
w2_scale=w2_s,
|
|
block_shape=block_size,
|
|
)
|
|
ref_out = torch_w8a8_block_fp8_moe(a, w1, w2, w1_s, w2_s, score, topk,
|
|
block_size)
|
|
|
|
print(f"{out.sum()=}")
|
|
print(f"{ref_out.sum()=}")
|
|
|
|
rel_diff = (torch.mean(
|
|
torch.abs(out.to(torch.float32) - ref_out.to(torch.float32))) /
|
|
torch.mean(torch.abs(ref_out.to(torch.float32))))
|
|
assert rel_diff < 0.03
|