vllm/tests/kernels/test_block_fp8.py
Russell Bryant e489ad7a21
[Misc] Add SPDX-License-Identifier headers to python source files (#12628)
- **Add SPDX license headers to python source files**
- **Check for SPDX headers using pre-commit**

commit 9d7ef44c3cfb72ca4c32e1c677d99259d10d4745
Author: Russell Bryant <rbryant@redhat.com>
Date:   Fri Jan 31 14:18:24 2025 -0500

    Add SPDX license headers to python source files
    
This commit adds SPDX license headers to python source files as
recommended to
the project by the Linux Foundation. These headers provide a concise way
that is
both human and machine readable for communicating license information
for each
source file. It helps avoid any ambiguity about the license of the code
and can
    also be easily used by tools to help manage license compliance.
    
The Linux Foundation runs license scans against the codebase to help
ensure
    we are in compliance with the licenses of the code we use, including
dependencies. Having these headers in place helps that tool do its job.
    
    More information can be found on the SPDX site:
    
    - https://spdx.dev/learn/handling-license-info/
    
    Signed-off-by: Russell Bryant <rbryant@redhat.com>

commit 5a1cf1cb3b80759131c73f6a9dddebccac039dea
Author: Russell Bryant <rbryant@redhat.com>
Date:   Fri Jan 31 14:36:32 2025 -0500

    Check for SPDX headers using pre-commit
    
    Signed-off-by: Russell Bryant <rbryant@redhat.com>

---------

Signed-off-by: Russell Bryant <rbryant@redhat.com>
2025-02-02 11:58:18 -08:00

271 lines
9.7 KiB
Python

# SPDX-License-Identifier: Apache-2.0
# Adapted from https://github.com/sgl-project/sglang/pull/2575
import itertools
import pytest
import torch
from vllm.model_executor.layers.activation import SiluAndMul
from vllm.model_executor.layers.fused_moe import fused_moe
from vllm.model_executor.layers.quantization.utils.fp8_utils import (
per_token_group_quant_fp8, w8a8_block_fp8_matmul)
from vllm.platforms import current_platform
if current_platform.get_device_capability() < (9, 0):
pytest.skip("FP8 Triton requires CUDA 9.0 or higher",
allow_module_level=True)
# Test configurations
DTYPES = [torch.bfloat16] # [torch.half, torch.bfloat16, torch.float32]
NUM_TOKENS = [7, 83, 2048]
D = [512, 4096, 5120, 13824]
GROUP_SIZE = [64, 128, 256, 512]
M = [1, 7, 83, 512, 2048]
N = [128, 512, 1024, 4096, 7748, 13824]
K = [256, 4096, 5120, 3884, 13824]
# Deepseek-V3's intermediate size 18432, so N is 18432*2/8=4608 at TP8
# and its hidden size is 7168.
M_moe = [1, 7, 83, 512, 2048]
N_moe = [4608] # [128, 4608, 13824]
K_moe = [7168] # [256, 7168, 13824]
BLOCK_SIZE = [[128, 128]]
E = [256] # [8, 24, 128, 256]
TOP_KS = [1] # [1, 2, 6]
OUT_DTYPES = [torch.bfloat16] # [torch.float32, torch.half, torch.bfloat16]
SEEDS = [0]
def native_per_token_group_quant_fp8(x,
group_size,
eps=1e-10,
dtype=torch.float8_e4m3fn):
"""Function to perform per-token-group quantization on an input tensor
`x` using native torch."""
assert x.shape[-1] % group_size == 0, ("the last dimension of `x` cannot "
"be divisible by `group_size`")
assert x.is_contiguous(), "`x` is not contiguous"
finfo = torch.finfo(dtype)
fp8_min = finfo.min
fp8_max = finfo.max
x_ = x.reshape(x.numel() // group_size, group_size)
amax = x_.abs().max(dim=-1,
keepdim=True)[0].clamp(min=eps).to(torch.float32)
x_s = amax / fp8_max
x_q = (x_ / x_s).clamp(min=fp8_min, max=fp8_max).to(dtype)
x_q = x_q.reshape(x.shape)
x_s = x_s.reshape(x.shape[:-1] + (x.shape[-1] // group_size, ))
return x_q, x_s
def native_w8a8_block_fp8_matmul(A,
B,
As,
Bs,
block_size,
output_dtype=torch.float16):
"""Matrix multiplication with block-wise quantization using native torch."""
A = A.to(torch.float32)
B = B.to(torch.float32)
assert A.shape[-1] == B.shape[-1]
assert B.ndim == 2 and B.is_contiguous() and Bs.ndim == 2
assert len(block_size) == 2
block_n, block_k = block_size[0], block_size[1]
assert (A.shape[-1] + block_k - 1) // block_k == As.shape[-1]
assert A.shape[:-1] == As.shape[:-1]
M = A.numel() // A.shape[-1]
N, K = B.shape
origin_C_shape = A.shape[:-1] + (N, )
A = A.reshape(M, A.shape[-1])
As = As.reshape(M, As.shape[-1])
n_tiles = (N + block_n - 1) // block_n
k_tiles = (K + block_k - 1) // block_k
assert n_tiles == Bs.shape[0]
assert k_tiles == Bs.shape[1]
C_shape = (M, N)
C = torch.zeros(C_shape, dtype=torch.float32, device=A.device)
A_tiles = [
A[:, i * block_k:min((i + 1) * block_k, K)] for i in range(k_tiles)
]
B_tiles = [[
B[
j * block_n:min((j + 1) * block_n, N),
i * block_k:min((i + 1) * block_k, K),
] for i in range(k_tiles)
] for j in range(n_tiles)]
C_tiles = [
C[:, j * block_n:min((j + 1) * block_n, N)] for j in range(n_tiles)
]
As_tiles = [As[:, i:i + 1] for i in range(k_tiles)]
for i in range(k_tiles):
for j in range(n_tiles):
a = A_tiles[i]
b = B_tiles[j][i]
c = C_tiles[j]
s = As_tiles[i] * Bs[j][i]
c[:, :] += torch.matmul(a, b.t()) * s
C = C.reshape(origin_C_shape).to(output_dtype)
return C
def torch_w8a8_block_fp8_moe(a, w1, w2, w1_s, w2_s, score, topk, block_shape):
"""Fused moe with block-wise quantization using native torch."""
B, D = a.shape
a = a.view(B, -1, D).repeat(1, topk, 1).reshape(-1, D)
out = torch.zeros(B * topk, w2.shape[1], dtype=a.dtype, device=a.device)
score = torch.softmax(score, dim=-1, dtype=torch.float32)
topk_weight, topk_ids = torch.topk(score, topk)
topk_weight = topk_weight.view(-1)
topk_ids = topk_ids.view(-1)
_, block_k = block_shape[0], block_shape[1]
a_q, a_s = native_per_token_group_quant_fp8(a, block_k)
a_q = a_q.to(torch.float32)
for i in range(w1.shape[0]):
mask = topk_ids == i
if mask.sum():
inter_out = native_w8a8_block_fp8_matmul(a_q[mask],
w1[i],
a_s[mask],
w1_s[i],
block_shape,
output_dtype=a.dtype)
act_out = SiluAndMul().forward_native(inter_out)
act_out_q, act_out_s = native_per_token_group_quant_fp8(
act_out, block_k)
act_out = act_out.to(torch.float32)
out[mask] = native_w8a8_block_fp8_matmul(act_out_q,
w2[i],
act_out_s,
w2_s[i],
block_shape,
output_dtype=a.dtype)
return (out.view(B, -1, w2.shape[1]) *
topk_weight.view(B, -1, 1).to(out.dtype)).sum(dim=1)
# Skip all tests if CUDA is not available
pytest.importorskip("torch.cuda")
@pytest.fixture(autouse=True)
def setup_cuda():
torch.set_default_device("cuda")
@pytest.mark.parametrize(
"num_tokens,d,dtype,group_size,seed",
itertools.product(NUM_TOKENS, D, DTYPES, GROUP_SIZE, SEEDS))
@torch.inference_mode()
def test_per_token_group_quant_fp8(num_tokens, d, dtype, group_size, seed):
torch.manual_seed(seed)
x = torch.rand(num_tokens, d, dtype=dtype)
ref_out, ref_scale = native_per_token_group_quant_fp8(x, group_size)
out, scale = per_token_group_quant_fp8(x, group_size)
assert torch.allclose(out.to(torch.float32),
ref_out.to(torch.float32),
rtol=0.15)
assert torch.allclose(scale, ref_scale)
@pytest.mark.parametrize(
"M,N,K,block_size,out_dtype,seed",
itertools.product(M, N, K, BLOCK_SIZE, OUT_DTYPES, SEEDS))
@torch.inference_mode()
def test_w8a8_block_fp8_matmul(M, N, K, block_size, out_dtype, seed):
torch.manual_seed(seed)
factor_for_scale = 1e-2
fp8_info = torch.finfo(torch.float8_e4m3fn)
fp8_max, fp8_min = fp8_info.max, fp8_info.min
A_fp32 = (torch.rand(M, K, dtype=torch.float32) - 0.5) * 2 * fp8_max
A_fp8 = A_fp32.clamp(min=fp8_min, max=fp8_max).to(torch.float8_e4m3fn)
B_fp32 = (torch.rand(N, K, dtype=torch.float32) - 0.5) * 2 * fp8_max
B_fp8 = B_fp32.clamp(min=fp8_min, max=fp8_max).to(torch.float8_e4m3fn)
block_n, block_k = block_size[0], block_size[1]
n_tiles = (N + block_n - 1) // block_n
k_tiles = (K + block_k - 1) // block_k
As = torch.rand(M, k_tiles, dtype=torch.float32) * factor_for_scale
Bs = torch.rand(n_tiles, k_tiles, dtype=torch.float32) * factor_for_scale
ref_out = native_w8a8_block_fp8_matmul(A_fp8, B_fp8, As, Bs, block_size,
out_dtype)
out = w8a8_block_fp8_matmul(A_fp8, B_fp8, As, Bs, block_size, out_dtype)
rel_diff = (torch.mean(
torch.abs(out.to(torch.float32) - ref_out.to(torch.float32))) /
torch.mean(torch.abs(ref_out.to(torch.float32))))
assert rel_diff < 0.001
@pytest.mark.parametrize(
"M,N,K,E,topk,block_size,dtype,seed",
itertools.product(M_moe, N_moe, K_moe, E, TOP_KS, BLOCK_SIZE, DTYPES,
SEEDS))
@torch.inference_mode()
def test_w8a8_block_fp8_fused_moe(M, N, K, E, topk, block_size, dtype, seed):
torch.manual_seed(seed)
factor_for_scale = 1e-2
fp8_info = torch.finfo(torch.float8_e4m3fn)
fp8_max, fp8_min = fp8_info.max, fp8_info.min
a = torch.randn((M, K), dtype=dtype) / 10
w1_bf16 = (torch.rand(
(E, 2 * N, K), dtype=torch.bfloat16) - 0.5) * 2 * fp8_max
w1 = w1_bf16.clamp(min=fp8_min, max=fp8_max).to(torch.float8_e4m3fn)
del w1_bf16
w2_bf16 = (torch.rand((E, K, N), dtype=torch.bfloat16) - 0.5) * 2 * fp8_max
w2 = w2_bf16.clamp(min=fp8_min, max=fp8_max).to(torch.float8_e4m3fn)
del w2_bf16
block_n, block_k = block_size[0], block_size[1]
n_tiles_w1 = (2 * N + block_n - 1) // block_n
n_tiles_w2 = (K + block_n - 1) // block_n
k_tiles_w1 = (K + block_k - 1) // block_k
k_tiles_w2 = (N + block_k - 1) // block_k
w1_s = torch.rand(
(E, n_tiles_w1, k_tiles_w1), dtype=torch.float32) * factor_for_scale
w2_s = torch.rand(
(E, n_tiles_w2, k_tiles_w2), dtype=torch.float32) * factor_for_scale
score = torch.randn((M, E), dtype=dtype)
out = fused_moe(
a,
w1,
w2,
score,
topk,
renormalize=False,
use_fp8_w8a8=True,
w1_scale=w1_s,
w2_scale=w2_s,
block_shape=block_size,
)
ref_out = torch_w8a8_block_fp8_moe(a, w1, w2, w1_s, w2_s, score, topk,
block_size)
print(f"{out.sum()=}")
print(f"{ref_out.sum()=}")
rel_diff = (torch.mean(
torch.abs(out.to(torch.float32) - ref_out.to(torch.float32))) /
torch.mean(torch.abs(ref_out.to(torch.float32))))
assert rel_diff < 0.03