vllm/tests/entrypoints/openai/test_video.py
Russell Bryant e489ad7a21
[Misc] Add SPDX-License-Identifier headers to python source files (#12628)
- **Add SPDX license headers to python source files**
- **Check for SPDX headers using pre-commit**

commit 9d7ef44c3cfb72ca4c32e1c677d99259d10d4745
Author: Russell Bryant <rbryant@redhat.com>
Date:   Fri Jan 31 14:18:24 2025 -0500

    Add SPDX license headers to python source files
    
This commit adds SPDX license headers to python source files as
recommended to
the project by the Linux Foundation. These headers provide a concise way
that is
both human and machine readable for communicating license information
for each
source file. It helps avoid any ambiguity about the license of the code
and can
    also be easily used by tools to help manage license compliance.
    
The Linux Foundation runs license scans against the codebase to help
ensure
    we are in compliance with the licenses of the code we use, including
dependencies. Having these headers in place helps that tool do its job.
    
    More information can be found on the SPDX site:
    
    - https://spdx.dev/learn/handling-license-info/
    
    Signed-off-by: Russell Bryant <rbryant@redhat.com>

commit 5a1cf1cb3b80759131c73f6a9dddebccac039dea
Author: Russell Bryant <rbryant@redhat.com>
Date:   Fri Jan 31 14:36:32 2025 -0500

    Check for SPDX headers using pre-commit
    
    Signed-off-by: Russell Bryant <rbryant@redhat.com>

---------

Signed-off-by: Russell Bryant <rbryant@redhat.com>
2025-02-02 11:58:18 -08:00

351 lines
10 KiB
Python

# SPDX-License-Identifier: Apache-2.0
from typing import Dict, List
import openai
import pytest
import pytest_asyncio
from vllm.multimodal.utils import encode_video_base64, fetch_video
from ...utils import RemoteOpenAIServer
MODEL_NAME = "llava-hf/llava-onevision-qwen2-0.5b-ov-hf"
MAXIMUM_VIDEOS = 4
TEST_VIDEO_URLS = [
"http://commondatastorage.googleapis.com/gtv-videos-bucket/sample/BigBuckBunny.mp4",
"http://commondatastorage.googleapis.com/gtv-videos-bucket/sample/ElephantsDream.mp4",
"http://commondatastorage.googleapis.com/gtv-videos-bucket/sample/ForBiggerBlazes.mp4",
"http://commondatastorage.googleapis.com/gtv-videos-bucket/sample/ForBiggerFun.mp4",
]
@pytest.fixture(scope="module")
def server():
args = [
"--task",
"generate",
"--dtype",
"bfloat16",
"--max-model-len",
"32768",
"--max-num-seqs",
"2",
"--enforce-eager",
"--trust-remote-code",
"--limit-mm-per-prompt",
f"video={MAXIMUM_VIDEOS}",
]
with RemoteOpenAIServer(MODEL_NAME, args) as remote_server:
yield remote_server
@pytest_asyncio.fixture
async def client(server):
async with server.get_async_client() as async_client:
yield async_client
@pytest.fixture(scope="session")
def base64_encoded_video() -> Dict[str, str]:
return {
video_url: encode_video_base64(fetch_video(video_url))
for video_url in TEST_VIDEO_URLS
}
@pytest.mark.asyncio
@pytest.mark.parametrize("model_name", [MODEL_NAME])
@pytest.mark.parametrize("video_url", TEST_VIDEO_URLS)
async def test_single_chat_session_video(client: openai.AsyncOpenAI,
model_name: str, video_url: str):
messages = [{
"role":
"user",
"content": [
{
"type": "video_url",
"video_url": {
"url": video_url
}
},
{
"type": "text",
"text": "What's in this video?"
},
],
}]
# test single completion
chat_completion = await client.chat.completions.create(
model=model_name,
messages=messages,
max_completion_tokens=10,
logprobs=True,
temperature=0.0,
top_logprobs=5)
assert len(chat_completion.choices) == 1
choice = chat_completion.choices[0]
assert choice.finish_reason == "length"
assert chat_completion.usage == openai.types.CompletionUsage(
completion_tokens=10, prompt_tokens=6299, total_tokens=6309)
message = choice.message
message = chat_completion.choices[0].message
assert message.content is not None and len(message.content) >= 10
assert message.role == "assistant"
messages.append({"role": "assistant", "content": message.content})
# test multi-turn dialogue
messages.append({"role": "user", "content": "express your result in json"})
chat_completion = await client.chat.completions.create(
model=model_name,
messages=messages,
max_completion_tokens=10,
)
message = chat_completion.choices[0].message
assert message.content is not None and len(message.content) >= 0
@pytest.mark.asyncio
@pytest.mark.parametrize("model_name", [MODEL_NAME])
@pytest.mark.parametrize("video_url", TEST_VIDEO_URLS)
async def test_single_chat_session_video_beamsearch(client: openai.AsyncOpenAI,
model_name: str,
video_url: str):
messages = [{
"role":
"user",
"content": [
{
"type": "video_url",
"video_url": {
"url": video_url
}
},
{
"type": "text",
"text": "What's in this video?"
},
],
}]
chat_completion = await client.chat.completions.create(
model=model_name,
messages=messages,
n=2,
max_completion_tokens=10,
logprobs=True,
top_logprobs=5,
extra_body=dict(use_beam_search=True))
assert len(chat_completion.choices) == 2
assert chat_completion.choices[
0].message.content != chat_completion.choices[1].message.content
@pytest.mark.asyncio
@pytest.mark.parametrize("model_name", [MODEL_NAME])
@pytest.mark.parametrize("video_url", TEST_VIDEO_URLS)
async def test_single_chat_session_video_base64encoded(
client: openai.AsyncOpenAI, model_name: str, video_url: str,
base64_encoded_video: Dict[str, str]):
messages = [{
"role":
"user",
"content": [
{
"type": "video_url",
"video_url": {
"url":
f"data:video/jpeg;base64,{base64_encoded_video[video_url]}"
}
},
{
"type": "text",
"text": "What's in this video?"
},
],
}]
# test single completion
chat_completion = await client.chat.completions.create(
model=model_name,
messages=messages,
max_completion_tokens=10,
logprobs=True,
temperature=0.0,
top_logprobs=5)
assert len(chat_completion.choices) == 1
choice = chat_completion.choices[0]
assert choice.finish_reason == "length"
assert chat_completion.usage == openai.types.CompletionUsage(
completion_tokens=10, prompt_tokens=6299, total_tokens=6309)
message = choice.message
message = chat_completion.choices[0].message
assert message.content is not None and len(message.content) >= 10
assert message.role == "assistant"
messages.append({"role": "assistant", "content": message.content})
# test multi-turn dialogue
messages.append({"role": "user", "content": "express your result in json"})
chat_completion = await client.chat.completions.create(
model=model_name,
messages=messages,
max_completion_tokens=10,
temperature=0.0,
)
message = chat_completion.choices[0].message
assert message.content is not None and len(message.content) >= 0
@pytest.mark.asyncio
@pytest.mark.parametrize("model_name", [MODEL_NAME])
@pytest.mark.parametrize("video_url", TEST_VIDEO_URLS)
async def test_single_chat_session_video_base64encoded_beamsearch(
client: openai.AsyncOpenAI, model_name: str, video_url: str,
base64_encoded_video: Dict[str, str]):
messages = [{
"role":
"user",
"content": [
{
"type": "video_url",
"video_url": {
"url":
f"data:video/jpeg;base64,{base64_encoded_video[video_url]}"
}
},
{
"type": "text",
"text": "What's in this video?"
},
],
}]
chat_completion = await client.chat.completions.create(
model=model_name,
messages=messages,
n=2,
max_completion_tokens=10,
extra_body=dict(use_beam_search=True))
assert len(chat_completion.choices) == 2
assert chat_completion.choices[
0].message.content != chat_completion.choices[1].message.content
@pytest.mark.asyncio
@pytest.mark.parametrize("model_name", [MODEL_NAME])
@pytest.mark.parametrize("video_url", TEST_VIDEO_URLS)
async def test_chat_streaming_video(client: openai.AsyncOpenAI,
model_name: str, video_url: str):
messages = [{
"role":
"user",
"content": [
{
"type": "video_url",
"video_url": {
"url": video_url
}
},
{
"type": "text",
"text": "What's in this video?"
},
],
}]
# test single completion
chat_completion = await client.chat.completions.create(
model=model_name,
messages=messages,
max_completion_tokens=10,
temperature=0.0,
)
output = chat_completion.choices[0].message.content
stop_reason = chat_completion.choices[0].finish_reason
# test streaming
stream = await client.chat.completions.create(
model=model_name,
messages=messages,
max_completion_tokens=10,
temperature=0.0,
stream=True,
)
chunks: List[str] = []
finish_reason_count = 0
async for chunk in stream:
delta = chunk.choices[0].delta
if delta.role:
assert delta.role == "assistant"
if delta.content:
chunks.append(delta.content)
if chunk.choices[0].finish_reason is not None:
finish_reason_count += 1
# finish reason should only return in last block
assert finish_reason_count == 1
assert chunk.choices[0].finish_reason == stop_reason
assert delta.content
assert "".join(chunks) == output
@pytest.mark.asyncio
@pytest.mark.parametrize("model_name", [MODEL_NAME])
@pytest.mark.parametrize(
"video_urls",
[TEST_VIDEO_URLS[:i] for i in range(2, len(TEST_VIDEO_URLS))])
async def test_multi_video_input(client: openai.AsyncOpenAI, model_name: str,
video_urls: List[str]):
messages = [{
"role":
"user",
"content": [
*({
"type": "video_url",
"video_url": {
"url": video_url
}
} for video_url in video_urls),
{
"type": "text",
"text": "What's in this video?"
},
],
}]
if len(video_urls) > MAXIMUM_VIDEOS:
with pytest.raises(openai.BadRequestError): # test multi-video input
await client.chat.completions.create(
model=model_name,
messages=messages,
max_completion_tokens=10,
temperature=0.0,
)
# the server should still work afterwards
completion = await client.completions.create(
model=model_name,
prompt=[0, 0, 0, 0, 0],
max_tokens=5,
temperature=0.0,
)
completion = completion.choices[0].text
assert completion is not None and len(completion) >= 0
else:
chat_completion = await client.chat.completions.create(
model=model_name,
messages=messages,
max_completion_tokens=10,
temperature=0.0,
)
message = chat_completion.choices[0].message
assert message.content is not None and len(message.content) >= 0