297 lines
10 KiB
Python
297 lines
10 KiB
Python
# coding=utf-8
|
|
# Adapted from
|
|
# https://huggingface.co/Qwen/Qwen-7B/blob/main/modeling_qwen.py
|
|
# Copyright (c) Alibaba Cloud.
|
|
# LICENSE: https://huggingface.co/Qwen/Qwen-7B/blob/main/LICENSE
|
|
"""Inference-only QWen model compatible with HuggingFace weights."""
|
|
from typing import Any, Dict, List, Optional, Tuple
|
|
|
|
import torch
|
|
from torch import nn
|
|
|
|
from vllm.model_executor.input_metadata import InputMetadata
|
|
from vllm.model_executor.layers.activation import SiluAndMul
|
|
from vllm.model_executor.layers.attention import PagedAttention
|
|
from vllm.model_executor.layers.layernorm import RMSNorm
|
|
from vllm.model_executor.layers.linear import (LinearMethodBase,
|
|
MergedColumnParallelLinear,
|
|
QKVParallelLinear,
|
|
RowParallelLinear)
|
|
from vllm.model_executor.layers.rotary_embedding import get_rope
|
|
from vllm.model_executor.layers.sampler import Sampler
|
|
from vllm.model_executor.layers.vocab_parallel_embedding import (
|
|
VocabParallelEmbedding, ParallelLMHead)
|
|
from vllm.model_executor.parallel_utils.parallel_state import (
|
|
get_tensor_model_parallel_world_size)
|
|
from vllm.model_executor.sampling_metadata import SamplingMetadata
|
|
from vllm.model_executor.weight_utils import (default_weight_loader,
|
|
hf_model_weights_iterator)
|
|
from vllm.sequence import SamplerOutput
|
|
from vllm.transformers_utils.configs.qwen import QWenConfig
|
|
|
|
KVCache = Tuple[torch.Tensor, torch.Tensor]
|
|
|
|
|
|
class QWenMLP(nn.Module):
|
|
|
|
def __init__(
|
|
self,
|
|
hidden_size: int,
|
|
intermediate_size: int,
|
|
hidden_act: str = "silu",
|
|
linear_method: Optional[LinearMethodBase] = None,
|
|
):
|
|
super().__init__()
|
|
self.gate_up_proj = MergedColumnParallelLinear(
|
|
hidden_size, [intermediate_size] * 2,
|
|
bias=False,
|
|
linear_method=linear_method)
|
|
self.c_proj = RowParallelLinear(intermediate_size,
|
|
hidden_size,
|
|
bias=False,
|
|
linear_method=linear_method)
|
|
if hidden_act != "silu":
|
|
raise ValueError(f"Unsupported activation: {hidden_act}. "
|
|
"Only silu is supported for now.")
|
|
self.act_fn = SiluAndMul()
|
|
|
|
def forward(self, x):
|
|
gate_up, _ = self.gate_up_proj(x)
|
|
x = self.act_fn(gate_up)
|
|
x, _ = self.c_proj(x)
|
|
return x
|
|
|
|
|
|
class QWenAttention(nn.Module):
|
|
|
|
def __init__(
|
|
self,
|
|
hidden_size: int,
|
|
num_heads: int,
|
|
max_position_embeddings: int,
|
|
rope_theta: float = 10000,
|
|
rope_scaling: Optional[Dict[str, Any]] = None,
|
|
linear_method: Optional[LinearMethodBase] = None,
|
|
):
|
|
super().__init__()
|
|
self.hidden_size = hidden_size
|
|
tensor_model_parallel_world_size = get_tensor_model_parallel_world_size(
|
|
)
|
|
self.total_num_heads = num_heads
|
|
assert self.total_num_heads % tensor_model_parallel_world_size == 0
|
|
self.num_heads = (self.total_num_heads //
|
|
tensor_model_parallel_world_size)
|
|
self.head_dim = hidden_size // self.total_num_heads
|
|
self.c_attn = QKVParallelLinear(
|
|
hidden_size,
|
|
self.head_dim,
|
|
self.total_num_heads,
|
|
bias=True,
|
|
linear_method=linear_method,
|
|
)
|
|
self.c_proj = RowParallelLinear(
|
|
self.total_num_heads * self.head_dim,
|
|
hidden_size,
|
|
bias=False,
|
|
linear_method=linear_method,
|
|
)
|
|
self.scaling = self.head_dim**-0.5
|
|
|
|
self.rotary_emb = get_rope(
|
|
self.head_dim,
|
|
rotary_dim=self.head_dim,
|
|
max_position=max_position_embeddings,
|
|
base=rope_theta,
|
|
rope_scaling=rope_scaling,
|
|
)
|
|
self.attn = PagedAttention(self.num_heads, self.head_dim, self.scaling)
|
|
|
|
def forward(
|
|
self,
|
|
positions: torch.Tensor,
|
|
hidden_states: torch.Tensor,
|
|
kv_cache: KVCache,
|
|
input_metadata: InputMetadata,
|
|
cache_event: Optional[torch.cuda.Event],
|
|
) -> torch.Tensor:
|
|
qkv, _ = self.c_attn(hidden_states)
|
|
q, k, v = qkv.chunk(chunks=3, dim=-1)
|
|
q, k = self.rotary_emb(positions, q, k)
|
|
k_cache, v_cache = kv_cache
|
|
attn_output = self.attn(q, k, v, k_cache, v_cache, input_metadata,
|
|
cache_event)
|
|
|
|
output, _ = self.c_proj(attn_output)
|
|
return output
|
|
|
|
|
|
class QWenBlock(nn.Module):
|
|
|
|
def __init__(
|
|
self,
|
|
config: QWenConfig,
|
|
linear_method: Optional[LinearMethodBase] = None,
|
|
):
|
|
super().__init__()
|
|
self.ln_1 = RMSNorm(config.hidden_size, eps=config.layer_norm_epsilon)
|
|
|
|
rope_theta = getattr(config, "rope_theta", 10000)
|
|
rope_scaling = getattr(config, "rope_scaling", None)
|
|
self.attn = QWenAttention(config.hidden_size,
|
|
config.num_attention_heads,
|
|
config.max_position_embeddings,
|
|
rope_theta=rope_theta,
|
|
rope_scaling=rope_scaling,
|
|
linear_method=linear_method)
|
|
|
|
self.ln_2 = RMSNorm(config.hidden_size, eps=config.layer_norm_epsilon)
|
|
|
|
self.mlp = QWenMLP(config.hidden_size,
|
|
config.intermediate_size // 2,
|
|
linear_method=linear_method)
|
|
|
|
def forward(
|
|
self,
|
|
positions: torch.Tensor,
|
|
hidden_states: torch.Tensor,
|
|
kv_cache: KVCache,
|
|
input_metadata: InputMetadata,
|
|
cache_event: Optional[torch.cuda.Event],
|
|
residual: Optional[torch.Tensor],
|
|
) -> Tuple[torch.Tensor, torch.Tensor]:
|
|
# Self Attention
|
|
if residual is None:
|
|
residual = hidden_states
|
|
hidden_states = self.ln_1(hidden_states)
|
|
else:
|
|
hidden_states, residual = self.ln_1(hidden_states, residual)
|
|
hidden_states = self.attn(
|
|
positions=positions,
|
|
hidden_states=hidden_states,
|
|
kv_cache=kv_cache,
|
|
input_metadata=input_metadata,
|
|
cache_event=cache_event,
|
|
)
|
|
|
|
# Fully Connected
|
|
hidden_states, residual = self.ln_2(hidden_states, residual)
|
|
hidden_states = self.mlp(hidden_states)
|
|
return hidden_states, residual
|
|
|
|
|
|
class QWenModel(nn.Module):
|
|
|
|
def __init__(
|
|
self,
|
|
config: QWenConfig,
|
|
linear_method: Optional[LinearMethodBase] = None,
|
|
):
|
|
super().__init__()
|
|
self.config = config
|
|
self.vocab_size = config.vocab_size
|
|
|
|
self.wte = VocabParallelEmbedding(
|
|
config.vocab_size,
|
|
config.hidden_size,
|
|
)
|
|
self.h = nn.ModuleList([
|
|
QWenBlock(config, linear_method)
|
|
for _ in range(config.num_hidden_layers)
|
|
])
|
|
self.ln_f = RMSNorm(config.hidden_size, eps=config.layer_norm_epsilon)
|
|
|
|
def forward(
|
|
self,
|
|
input_ids: torch.Tensor,
|
|
positions: torch.Tensor,
|
|
kv_caches: List[KVCache],
|
|
input_metadata: InputMetadata,
|
|
cache_events: Optional[List[torch.cuda.Event]],
|
|
) -> torch.Tensor:
|
|
hidden_states = self.wte(input_ids)
|
|
residual = None
|
|
for i in range(len(self.h)):
|
|
cache_event = None if cache_events is None else cache_events[i]
|
|
layer = self.h[i]
|
|
hidden_states, residual = layer(
|
|
positions,
|
|
hidden_states,
|
|
kv_caches[i],
|
|
input_metadata,
|
|
cache_event,
|
|
residual,
|
|
)
|
|
hidden_states, _ = self.ln_f(hidden_states, residual)
|
|
return hidden_states
|
|
|
|
|
|
class QWenLMHeadModel(nn.Module):
|
|
|
|
def __init__(
|
|
self,
|
|
config: QWenConfig,
|
|
linear_method: Optional[LinearMethodBase] = None,
|
|
):
|
|
super().__init__()
|
|
self.config = config
|
|
self.linear_method = linear_method
|
|
self.transformer = QWenModel(config, linear_method)
|
|
self.lm_head = ParallelLMHead(config.vocab_size, config.hidden_size)
|
|
self.sampler = Sampler(config.vocab_size)
|
|
|
|
def forward(
|
|
self,
|
|
input_ids: torch.Tensor,
|
|
positions: torch.Tensor,
|
|
kv_caches: List[KVCache],
|
|
input_metadata: InputMetadata,
|
|
cache_events: Optional[List[torch.cuda.Event]],
|
|
) -> torch.Tensor:
|
|
hidden_states = self.transformer(input_ids, positions, kv_caches,
|
|
input_metadata, cache_events)
|
|
return hidden_states
|
|
|
|
def sample(
|
|
self,
|
|
hidden_states: torch.Tensor,
|
|
sampling_metadata: SamplingMetadata,
|
|
) -> SamplerOutput:
|
|
next_tokens = self.sampler(self.lm_head.weight, hidden_states,
|
|
sampling_metadata)
|
|
return next_tokens
|
|
|
|
def load_weights(self,
|
|
model_name_or_path: str,
|
|
cache_dir: Optional[str] = None,
|
|
load_format: str = "auto",
|
|
revision: Optional[str] = None):
|
|
stacked_params_mapping = [
|
|
# (param_name, shard_name, shard_id)
|
|
("gate_up_proj", "w2", 0),
|
|
("gate_up_proj", "w1", 1),
|
|
]
|
|
params_dict = dict(self.named_parameters())
|
|
for name, loaded_weight in hf_model_weights_iterator(
|
|
model_name_or_path, cache_dir, load_format, revision):
|
|
if "rotary_emb.inv_freq" in name:
|
|
continue
|
|
for (param_name, weight_name, shard_id) in stacked_params_mapping:
|
|
if weight_name not in name:
|
|
continue
|
|
name = name.replace(weight_name, param_name)
|
|
# Skip loading extra bias for GPTQ models.
|
|
if name.endswith(".bias") and name not in params_dict:
|
|
continue
|
|
param = params_dict[name]
|
|
weight_loader = param.weight_loader
|
|
weight_loader(param, loaded_weight, shard_id)
|
|
break
|
|
else:
|
|
# Skip loading extra bias for GPTQ models.
|
|
if name.endswith(".bias") and name not in params_dict:
|
|
continue
|
|
param = params_dict[name]
|
|
weight_loader = getattr(param, "weight_loader",
|
|
default_weight_loader)
|
|
weight_loader(param, loaded_weight)
|