180 lines
6.0 KiB
Python
180 lines
6.0 KiB
Python
import time
|
|
from typing import List, Optional
|
|
from typing import Sequence as GenericSequence
|
|
from typing import Tuple
|
|
|
|
from vllm import SamplingParams
|
|
from vllm.lora.request import LoRARequest
|
|
from vllm.sequence import Logprob, Sequence, SequenceGroup
|
|
|
|
|
|
def create_dummy_prompt(
|
|
request_id: str,
|
|
prompt_length: int,
|
|
block_size: Optional[int] = None,
|
|
lora_request: Optional[LoRARequest] = None,
|
|
use_beam_search: bool = False,
|
|
best_of: int = 1,
|
|
) -> Tuple[Sequence, SequenceGroup]:
|
|
if not block_size:
|
|
block_size = prompt_length
|
|
|
|
# Create dummy prompt sequence with tokens 0...block_size-1
|
|
# and prompt "0 ... block_size".
|
|
prompt_tokens = list(range(prompt_length))
|
|
prompt_str = " ".join([str(t) for t in prompt_tokens])
|
|
prompt = Sequence(int(request_id),
|
|
inputs={
|
|
"prompt": prompt_str,
|
|
"prompt_token_ids": prompt_tokens,
|
|
},
|
|
block_size=block_size)
|
|
seq_group = SequenceGroup(request_id=request_id,
|
|
seqs=[prompt],
|
|
arrival_time=time.time(),
|
|
sampling_params=SamplingParams(
|
|
use_beam_search=use_beam_search,
|
|
best_of=best_of),
|
|
lora_request=lora_request)
|
|
|
|
return prompt, seq_group
|
|
|
|
|
|
def create_dummy_prompt_encoder_decoder(
|
|
request_id: str,
|
|
decoder_prompt_length: int,
|
|
encoder_prompt_length: int,
|
|
block_size: Optional[int] = None,
|
|
lora_request: Optional[LoRARequest] = None,
|
|
use_beam_search: bool = False,
|
|
best_of: int = 1,
|
|
) -> Tuple[Sequence, Sequence, SequenceGroup]:
|
|
if not block_size:
|
|
block_size = decoder_prompt_length
|
|
|
|
# Create dummy prompt sequence with tokens 0...block_size-1
|
|
# and prompt "0 ... block_size".
|
|
decoder_prompt_tokens = list(range(decoder_prompt_length))
|
|
decoder_prompt_str = " ".join([str(t) for t in decoder_prompt_tokens])
|
|
|
|
decoder_prompt = Sequence(int(request_id),
|
|
inputs={
|
|
"prompt": decoder_prompt_str,
|
|
"prompt_token_ids": decoder_prompt_tokens,
|
|
"multi_modal_data": None,
|
|
},
|
|
block_size=block_size)
|
|
|
|
encoder_prompt_tokens = list(reversed(list(range(encoder_prompt_length))))
|
|
encoder_prompt_str = " ".join([str(t) for t in encoder_prompt_tokens])
|
|
encoder_prompt = Sequence(int(request_id),
|
|
inputs={
|
|
"prompt": encoder_prompt_str,
|
|
"prompt_token_ids": encoder_prompt_tokens,
|
|
"multi_modal_data": None,
|
|
},
|
|
block_size=block_size)
|
|
seq_group = SequenceGroup(request_id=request_id,
|
|
seqs=[decoder_prompt],
|
|
sampling_params=SamplingParams(
|
|
use_beam_search=use_beam_search,
|
|
best_of=best_of),
|
|
arrival_time=time.time(),
|
|
lora_request=lora_request,
|
|
encoder_seq=encoder_prompt)
|
|
|
|
return decoder_prompt, encoder_prompt, seq_group
|
|
|
|
|
|
def create_seq_group(
|
|
seq_prompt_len: int = 1024,
|
|
seq_output_lens: GenericSequence[int] = (128, ),
|
|
request_id: str = '0',
|
|
seq_id_start: int = 0,
|
|
sampling_params: Optional[SamplingParams] = None) -> SequenceGroup:
|
|
|
|
assert len(seq_output_lens) > 0
|
|
|
|
if sampling_params is None:
|
|
sampling_params = SamplingParams()
|
|
|
|
prompt_token_ids = [0] * seq_prompt_len
|
|
|
|
seqs: List[Sequence] = []
|
|
for seq_id_offset, output_len in enumerate(seq_output_lens):
|
|
seq = Sequence(
|
|
seq_id=seq_id_start + seq_id_offset,
|
|
inputs={"prompt_token_ids": prompt_token_ids},
|
|
block_size=16,
|
|
)
|
|
|
|
for i in range(output_len):
|
|
seq.append_token_id(
|
|
token_id=i,
|
|
logprobs={i: Logprob(0.0)},
|
|
)
|
|
seqs.append(seq)
|
|
|
|
seq_group = SequenceGroup(
|
|
request_id=request_id,
|
|
seqs=seqs,
|
|
sampling_params=sampling_params,
|
|
arrival_time=time.time(),
|
|
)
|
|
|
|
return seq_group
|
|
|
|
|
|
def create_seq_group_encoder_decoder(
|
|
seq_prompt_len: int = 1024,
|
|
seq_output_lens: GenericSequence[int] = (128, ),
|
|
request_id: str = '0',
|
|
seq_id_start: int = 0,
|
|
sampling_params: Optional[SamplingParams] = None) -> SequenceGroup:
|
|
|
|
assert len(seq_output_lens) > 0
|
|
|
|
if sampling_params is None:
|
|
sampling_params = SamplingParams()
|
|
|
|
prompt_token_ids = [0] * seq_prompt_len
|
|
|
|
seqs = []
|
|
for seq_id_offset, output_len in enumerate(seq_output_lens):
|
|
seq = Sequence(
|
|
seq_id=seq_id_start + seq_id_offset,
|
|
inputs={
|
|
"prompt": "",
|
|
"prompt_token_ids": prompt_token_ids,
|
|
"multi_modal_data": None,
|
|
},
|
|
block_size=16,
|
|
)
|
|
|
|
for i in range(output_len):
|
|
seq.append_token_id(
|
|
token_id=i,
|
|
logprobs={i: Logprob(0.0)},
|
|
)
|
|
seqs.append(seq)
|
|
|
|
# Encoder sequence
|
|
encoder_seq = Sequence(
|
|
seq_id=seq_id_start + len(seq_output_lens),
|
|
inputs={
|
|
"prompt": "",
|
|
"prompt_token_ids": prompt_token_ids,
|
|
"multi_modal_data": None,
|
|
},
|
|
block_size=16,
|
|
)
|
|
|
|
return SequenceGroup(request_id=request_id,
|
|
seqs=seqs,
|
|
sampling_params=sampling_params,
|
|
arrival_time=time.time(),
|
|
encoder_seq=encoder_seq)
|
|
|
|
|
|
def round_up_to_next_block(seq_len: int, block_size: int) -> int:
|
|
return (seq_len + block_size - 1) // block_size |