Cyrus Leung 0b8bb86bf1
[1/N] Initial prototype for multi-modal processor (#10044)
Signed-off-by: DarkLight1337 <tlleungac@connect.ust.hk>
2024-11-13 12:39:03 +00:00

669 lines
25 KiB
Python

# adapted from https://huggingface.co/OpenGVLab/InternVL2-4B/blob/main/modeling_internvl_chat.py
# --------------------------------------------------------
# InternVL
# Copyright (c) 2023 OpenGVLab
# Licensed under The MIT License [see LICENSE for details]
# --------------------------------------------------------
import re
from functools import cached_property, partial
from typing import (Iterable, List, Literal, Mapping, Optional, Tuple,
TypedDict, Union)
import torch
import torch.nn as nn
import torchvision.transforms as T
from PIL import Image
from transformers import PretrainedConfig
from vllm.attention import AttentionMetadata
from vllm.config import VllmConfig
from vllm.inputs import (INPUT_REGISTRY, DecoderOnlyInputs, DummyData,
InputContext, token_inputs)
from vllm.model_executor.layers.quantization import (AWQConfig,
QuantizationConfig)
from vllm.model_executor.layers.sampler import SamplerOutput, get_sampler
from vllm.model_executor.models.intern_vit import (InternVisionModel,
InternVisionPatchModel)
from vllm.model_executor.sampling_metadata import SamplingMetadata
from vllm.multimodal import MULTIMODAL_REGISTRY, MultiModalKwargs
from vllm.multimodal.utils import cached_get_tokenizer
from vllm.sequence import IntermediateTensors
from vllm.utils import is_list_of
from .clip import (dummy_image_for_clip, dummy_seq_data_for_clip,
get_clip_num_patches)
from .interfaces import SupportsMultiModal, SupportsPP
from .utils import (AutoWeightsLoader, flatten_bn, init_vllm_registered_model,
maybe_prefix, merge_multimodal_embeddings)
IMG_START = '<img>'
IMG_END = '</img>'
IMG_CONTEXT = '<IMG_CONTEXT>'
IMAGENET_MEAN = (0.485, 0.456, 0.406)
IMAGENET_STD = (0.229, 0.224, 0.225)
class InternVLImagePixelInputs(TypedDict):
type: Literal["pixel_values"]
data: torch.Tensor
"""
Shape:
`(batch_size * num_images * (1 + num_patches), num_channels, height, width)`
"""
class InternVLImageEmbeddingInputs(TypedDict):
type: Literal["image_embeds"]
data: torch.Tensor
"""Shape: `(batch_size * num_images, image_feature_size, hidden_size)`
`hidden_size` must match the hidden size of language model backbone.
"""
InternVLImageInputs = Union[InternVLImagePixelInputs,
InternVLImageEmbeddingInputs]
# copied from https://huggingface.co/OpenGVLab/InternVL2-1B
def build_transform(input_size):
MEAN, STD = IMAGENET_MEAN, IMAGENET_STD
transform = T.Compose([
T.Lambda(lambda img: img.convert('RGB') if img.mode != 'RGB' else img),
T.Resize((input_size, input_size),
interpolation=T.InterpolationMode.BICUBIC),
T.ToTensor(),
T.Normalize(mean=MEAN, std=STD)
])
return transform
# copied from https://huggingface.co/OpenGVLab/InternVL2-1B
def find_closest_aspect_ratio(aspect_ratio, target_ratios, width, height,
image_size):
best_ratio_diff = float('inf')
best_ratio = (1, 1)
area = width * height
for ratio in target_ratios:
target_aspect_ratio = ratio[0] / ratio[1]
ratio_diff = abs(aspect_ratio - target_aspect_ratio)
if ratio_diff < best_ratio_diff:
best_ratio_diff = ratio_diff
best_ratio = ratio
elif ratio_diff == best_ratio_diff:
if area > 0.5 * image_size * image_size * ratio[0] * ratio[1]:
best_ratio = ratio
return best_ratio
def calculate_num_blocks(orig_width: int, orig_height: int, min_num: int,
max_num: int, image_size: int,
use_thumbnail: bool) -> Tuple[int, int, int]:
aspect_ratio = orig_width / orig_height
# calculate the existing image aspect ratio
target_ratios = set((i, j) for n in range(min_num, max_num + 1)
for i in range(1, n + 1) for j in range(1, n + 1)
if i * j <= max_num and i * j >= min_num)
target_ratios = sorted(target_ratios, key=lambda x: x[0] * x[1])
# find the closest aspect ratio to the target
target_aspect_ratio = find_closest_aspect_ratio(aspect_ratio,
target_ratios, orig_width,
orig_height, image_size)
# calculate the target width and height
target_width = image_size * target_aspect_ratio[0]
target_height = image_size * target_aspect_ratio[1]
blocks = target_aspect_ratio[0] * target_aspect_ratio[1]
# add thumbnail image if num_blocks > 1
if use_thumbnail and blocks > 1:
blocks += 1
return blocks, target_width, target_height
def calculate_num_blocks_wrapper(hf_config: PretrainedConfig,
max_dynamic_patch: Optional[int] = None):
if max_dynamic_patch is None:
max_dynamic_patch = hf_config.max_dynamic_patch
min_num = hf_config.min_dynamic_patch
image_size = hf_config.vision_config.image_size
use_thumbnail = hf_config.use_thumbnail
return partial(calculate_num_blocks,
min_num=min_num,
max_num=max_dynamic_patch,
image_size=image_size,
use_thumbnail=use_thumbnail)
# adapted from https://huggingface.co/OpenGVLab/InternVL2-1B
def dynamic_preprocess(image: Image.Image, min_num: int, max_num: int,
image_size: int,
use_thumbnail: bool) -> List[Image.Image]:
orig_width, orig_height = image.size
# calculate the number of blocks without thumbnail
blocks, target_width, target_height = calculate_num_blocks(
orig_width,
orig_height,
min_num,
max_num,
image_size,
use_thumbnail=False)
# resize the image
resized_img = image.resize((target_width, target_height))
processed_images = []
for i in range(blocks):
box = ((i % (target_width // image_size)) * image_size,
(i // (target_width // image_size)) * image_size,
((i % (target_width // image_size)) + 1) * image_size,
((i // (target_width // image_size)) + 1) * image_size)
# split the image
split_img = resized_img.crop(box)
processed_images.append(split_img)
assert len(processed_images) == blocks
if use_thumbnail and len(processed_images) != 1:
thumbnail_img = image.resize((image_size, image_size))
processed_images.append(thumbnail_img)
return processed_images
# adapted from https://huggingface.co/OpenGVLab/InternVL2-1B
def image_to_pixel_values(image: Image.Image, input_size: int, min_num: int,
max_num: int, use_thumbnail: bool) -> torch.Tensor:
transform = build_transform(input_size=input_size)
images = dynamic_preprocess(image,
min_num=min_num,
max_num=max_num,
image_size=input_size,
use_thumbnail=use_thumbnail)
pixel_values = [transform(image) for image in images]
pixel_values = torch.stack(pixel_values)
return pixel_values
def image_to_pixel_values_wrapper(hf_config: PretrainedConfig,
max_dynamic_patch: Optional[int] = None):
image_size = hf_config.vision_config.image_size
min_num = hf_config.min_dynamic_patch
if max_dynamic_patch is None:
max_dynamic_patch = hf_config.max_dynamic_patch
use_thumbnail = hf_config.use_thumbnail
return partial(image_to_pixel_values,
input_size=image_size,
min_num=min_num,
max_num=max_dynamic_patch,
use_thumbnail=use_thumbnail)
def get_internvl_num_patches(hf_config: PretrainedConfig):
vision_config = hf_config.vision_config
downsample_ratio = hf_config.downsample_ratio
image_size = vision_config.image_size
patch_size = vision_config.patch_size
return int(
get_clip_num_patches(image_size=image_size, patch_size=patch_size) *
(downsample_ratio**2))
def get_max_internvl_image_tokens(ctx: InputContext,
*,
max_dynamic_patch: Optional[int] = None):
hf_config = ctx.get_hf_config()
if max_dynamic_patch is None:
max_dynamic_patch = hf_config.max_dynamic_patch
use_thumbnail = hf_config.use_thumbnail
if use_thumbnail and max_dynamic_patch > 1:
max_dynamic_patch += 1
num_patches = get_internvl_num_patches(hf_config)
return num_patches * max_dynamic_patch
def get_max_internvl_image_size(ctx: InputContext,
*,
max_dynamic_patch: Optional[int] = None):
hf_config = ctx.get_hf_config()
image_size = hf_config.vision_config.image_size
if max_dynamic_patch is None:
max_dynamic_patch = hf_config.max_dynamic_patch
use_thumbnail = hf_config.use_thumbnail
if use_thumbnail and max_dynamic_patch > 1:
max_dynamic_patch += 1
width = image_size * max_dynamic_patch
height = image_size
return width, height
class InternVLInputPipeline:
def __init__(
self,
img_start_token: str,
img_end_token: str,
img_context_token: str,
) -> None:
super().__init__()
self.img_start_token = img_start_token
self.img_end_token = img_end_token
self.img_context_token = img_context_token
def _create_image_prompt(self, feature_size: int, num_patches: int) -> str:
return (self.img_start_token + self.img_context_token * feature_size +
self.img_end_token)
def _expand_image_prompt(
self,
prompt: str,
feature_sizes: List[int],
num_patches: int,
) -> str:
image_idx = sorted(
map(int, re.findall(r"Image-(\d+): <image>\n", prompt)))
new_prompt = prompt
for idx, feature_size in enumerate(feature_sizes, start=1):
image_prompt = self._create_image_prompt(feature_size, num_patches)
if not image_idx:
image_prompt = f"Image-{idx}: {image_prompt}"
new_prompt = new_prompt.replace('<image>', image_prompt, 1)
return new_prompt
def input_processor(
self,
ctx: InputContext,
inputs: DecoderOnlyInputs,
*,
max_dynamic_patch: Optional[int] = None,
) -> DecoderOnlyInputs:
multi_modal_data = inputs.get("multi_modal_data")
if multi_modal_data is None or "image" not in multi_modal_data:
return inputs
model_config = ctx.model_config
hf_config = ctx.get_hf_config()
image_data = multi_modal_data["image"]
num_patches = get_internvl_num_patches(hf_config)
num_blocks_calculator = calculate_num_blocks_wrapper(
hf_config, max_dynamic_patch)
if isinstance(image_data, Image.Image):
width, height = image_data.size
num_blocks, _, _ = num_blocks_calculator(width, height)
image_feature_sizes = [num_blocks * num_patches]
elif is_list_of(image_data, Image.Image):
image_feature_sizes = []
for image in image_data:
width, height = image.size
num_blocks, _, _ = num_blocks_calculator(width, height)
image_feature_sizes.append(num_blocks * num_patches)
elif isinstance(image_data, torch.Tensor):
num_images, image_feature_size, hidden_size = image_data.shape
image_feature_sizes = [image_feature_size]
else:
raise TypeError(f"Invalid image type: {type(image_data)}")
tokenizer = cached_get_tokenizer(
model_config.tokenizer,
trust_remote_code=model_config.trust_remote_code)
prompt = inputs.get("prompt")
prompt_token_ids = inputs["prompt_token_ids"]
if prompt is None:
prompt = tokenizer.decode(prompt_token_ids)
new_prompt = self._expand_image_prompt(prompt, image_feature_sizes,
num_patches)
new_prompt_token_ids = tokenizer.encode(new_prompt)
return token_inputs(prompt=prompt,
prompt_token_ids=new_prompt_token_ids,
multi_modal_data=multi_modal_data)
def input_mapper(
self,
ctx: InputContext,
data: object,
*,
max_dynamic_patch: Optional[int] = None,
):
hf_config = ctx.get_hf_config()
image_pixel_values_mapper = image_to_pixel_values_wrapper(
hf_config, max_dynamic_patch)
if isinstance(data, Image.Image):
data = image_pixel_values_mapper(data)
# Add an N dimension for number of images per prompt (currently 1).
data = data.unsqueeze(0)
elif is_list_of(data, Image.Image):
# we can't stack here because images may have different num_patches
data = [image_pixel_values_mapper(img) for img in data]
else:
return MultiModalKwargs({"image_embeds": data})
model_config = ctx.model_config
tokenizer = cached_get_tokenizer(
model_config.tokenizer,
trust_remote_code=model_config.trust_remote_code)
image_token_id = tokenizer.encode(self.img_context_token,
add_special_tokens=False,
return_tensors="pt")[0]
return MultiModalKwargs({
"pixel_values": data,
"image_token_id": image_token_id
})
def dummy_data(
self,
ctx: InputContext,
seq_len: int,
mm_counts: Mapping[str, int],
*,
max_dynamic_patch: Optional[int] = None,
):
num_images = mm_counts["image"]
hf_config = ctx.get_hf_config()
image_feature_size = get_max_internvl_image_tokens(
ctx, max_dynamic_patch=max_dynamic_patch)
model_config = ctx.model_config
tokenizer = cached_get_tokenizer(
model_config.tokenizer,
trust_remote_code=model_config.trust_remote_code)
seq_data, ranges = dummy_seq_data_for_clip(
hf_config.vision_config,
seq_len,
num_images,
image_token_id=tokenizer.encode(self.img_context_token,
add_special_tokens=False)[0],
image_feature_size_override=image_feature_size,
)
max_image_width, max_image_height = get_max_internvl_image_size(
ctx, max_dynamic_patch=max_dynamic_patch)
mm_data = dummy_image_for_clip(
hf_config.vision_config,
num_images,
image_width_override=max_image_width,
image_height_override=max_image_height,
)
return DummyData(seq_data, mm_data, ranges)
input_pipeline = InternVLInputPipeline(IMG_START, IMG_END, IMG_CONTEXT)
@MULTIMODAL_REGISTRY.register_image_input_mapper(input_pipeline.input_mapper)
@MULTIMODAL_REGISTRY.register_max_image_tokens(get_max_internvl_image_tokens)
@INPUT_REGISTRY.register_dummy_data(input_pipeline.dummy_data)
@INPUT_REGISTRY.register_input_processor(input_pipeline.input_processor)
class InternVLChatModel(nn.Module, SupportsMultiModal, SupportsPP):
def __init__(self, vllm_config: VllmConfig, prefix: str = "") -> None:
super().__init__()
config = vllm_config.model_config.hf_config
quant_config = vllm_config.quant_config
multimodal_config = vllm_config.model_config.multimodal_config
self.config = config
self.multimodal_config = multimodal_config
self._patch_quant_config(config, quant_config)
image_size = config.force_image_size or config.vision_config.image_size
patch_size = config.vision_config.patch_size
self.patch_size = patch_size
self.num_image_token = int(
(image_size // patch_size)**2 * (config.downsample_ratio**2))
self.downsample_ratio = config.downsample_ratio
self.ps_version = config.ps_version
self.llm_arch_name = config.text_config.architectures[0]
self.is_mono = self.llm_arch_name == 'InternLM2VEForCausalLM'
self.vision_model = self._init_vision_model(
config,
quant_config=quant_config,
is_mono=self.is_mono,
prefix=maybe_prefix(prefix, "vision_model"),
)
self.language_model = init_vllm_registered_model(
config.text_config,
vllm_config=vllm_config,
prefix=maybe_prefix(prefix, "language_model"))
self.mlp1 = self._init_mlp1(config)
self.img_context_token_id = None
self.make_empty_intermediate_tensors = (
self.language_model.make_empty_intermediate_tensors)
def _patch_quant_config(self, config: PretrainedConfig,
quant_config: QuantizationConfig):
# the awq models from OpenGVLab missing `modules_to_not_convert`
# patch the quant_config to add `modules_to_not_convert` back
if isinstance(quant_config, AWQConfig):
text_config = config.text_config
llm_quant_config = getattr(text_config, "quantization_config",
None)
if (not quant_config.modules_to_not_convert) and \
(llm_quant_config is not None):
quant_config.modules_to_not_convert.append("vision_model")
@cached_property
def sampler(self):
if hasattr(self.language_model, "sampler"):
return self.language_model.sampler
return get_sampler()
def _init_vision_model(
self,
config: PretrainedConfig,
quant_config: Optional[QuantizationConfig],
*,
is_mono: bool,
prefix: str,
):
if not is_mono:
vision_feature_layer = config.select_layer
if vision_feature_layer < 0:
num_hidden_layers = config.vision_config.num_hidden_layers \
+ vision_feature_layer + 1
else:
num_hidden_layers = vision_feature_layer + 1
return InternVisionModel(
config.vision_config,
quant_config=quant_config,
num_hidden_layers_override=num_hidden_layers,
prefix=prefix,
)
else:
return InternVisionPatchModel(config.vision_config)
def _init_mlp1(self, config: PretrainedConfig) -> nn.Sequential:
vit_hidden_size = config.vision_config.hidden_size
llm_hidden_size = config.text_config.hidden_size
return nn.Sequential(
nn.LayerNorm(vit_hidden_size * int(1 / self.downsample_ratio)**2),
nn.Linear(vit_hidden_size * int(1 / self.downsample_ratio)**2,
llm_hidden_size),
nn.GELU(),
nn.Linear(llm_hidden_size, llm_hidden_size),
)
def pixel_shuffle(self, x, scale_factor=0.5):
n, w, h, c = x.size()
# N, W, H, C --> N, W, H * scale, C // scale
x = x.view(n, w, int(h * scale_factor), int(c / scale_factor))
# N, W, H * scale, C // scale --> N, H * scale, W, C // scale
x = x.permute(0, 2, 1, 3).contiguous()
x = x.view(n, int(h * scale_factor), int(w * scale_factor),
int(c / (scale_factor * scale_factor)))
if self.ps_version == 'v1':
pass
else:
x = x.permute(0, 2, 1, 3).contiguous()
return x
def extract_feature(self, pixel_values: torch.Tensor) -> torch.Tensor:
vit_embeds = self.vision_model(pixel_values=pixel_values)
vit_embeds = vit_embeds[:, 1:, :]
h = w = int(vit_embeds.shape[1]**0.5)
vit_embeds = vit_embeds.reshape(vit_embeds.shape[0], h, w, -1)
vit_embeds = self.pixel_shuffle(vit_embeds,
scale_factor=self.downsample_ratio)
vit_embeds = vit_embeds.reshape(vit_embeds.shape[0], -1,
vit_embeds.shape[-1])
vit_embeds = self.mlp1(vit_embeds)
return vit_embeds
def _validate_pixel_values(self, data: torch.Tensor) -> torch.Tensor:
h = w = self.config.vision_config.image_size
expected_dims = (3, h, w)
def _validate_shape(d: torch.Tensor):
actual_dims = tuple(d.shape)
if actual_dims != expected_dims:
expected_expr = str(expected_dims)
raise ValueError(
"The expected shape of pixel values per image per batch "
f" per patch is {expected_expr}. "
f"You supplied {tuple(d.shape)}.")
for d in data:
_validate_shape(d)
return data
def _parse_and_validate_image_input(
self, **kwargs: object) -> Optional[InternVLImageInputs]:
pixel_values = kwargs.pop("pixel_values", None)
image_token_id = kwargs.pop("image_token_id", None)
image_embeds = kwargs.pop("image_embeds", None)
if pixel_values is None and image_embeds is None:
return None
if image_embeds is not None:
if not isinstance(image_embeds, torch.Tensor):
raise ValueError("Incorrect type of image embeddings. "
f"Got type: {type(image_embeds)}")
return InternVLImageEmbeddingInputs(
type="image_embeds",
data=flatten_bn(image_embeds),
)
self.img_context_token_id = image_token_id[0]
if pixel_values is not None:
if not isinstance(pixel_values, (torch.Tensor, list)):
raise ValueError("Incorrect type of pixel values. "
f"Got type: {type(pixel_values)}")
# We need to flatten (B, N, P) to (B*N*P),
# so we call flatten_bn twice.
return InternVLImagePixelInputs(
type="pixel_values",
data=self._validate_pixel_values(
flatten_bn(flatten_bn(pixel_values), concat=True)),
)
raise AssertionError("This line should be unreachable.")
def _process_image_input(
self,
image_input: InternVLImageInputs,
) -> torch.Tensor:
if image_input["type"] == "image_embeds":
return image_input["data"]
assert self.vision_model is not None
image_embeds = self.extract_feature(image_input["data"])
return image_embeds
def _get_visual_token_mask(self, input_ids: torch.Tensor) -> torch.Tensor:
if self.is_mono:
visual_token_mask = (
input_ids == self.img_context_token_id).reshape(-1, 1)
else:
visual_token_mask = None
return visual_token_mask
def forward(
self,
input_ids: torch.Tensor,
positions: torch.Tensor,
kv_caches: List[torch.Tensor],
attn_metadata: AttentionMetadata,
intermediate_tensors: Optional[IntermediateTensors] = None,
**kwargs: object,
) -> Union[SamplerOutput, IntermediateTensors]:
if intermediate_tensors is not None:
input_ids = None
inputs_embeds = None
visual_token_mask = None
else:
image_input = self._parse_and_validate_image_input(**kwargs)
if image_input is not None:
inputs_embeds = self.language_model.model.get_input_embeddings(
input_ids)
vision_embeddings = self._process_image_input(image_input)
inputs_embeds = merge_multimodal_embeddings(
input_ids, inputs_embeds, vision_embeddings,
self.img_context_token_id)
visual_token_mask = self._get_visual_token_mask(input_ids)
input_ids = None
else:
inputs_embeds = None
visual_token_mask = None
forward_kwargs = {
"input_ids": input_ids,
"positions": positions,
"kv_caches": kv_caches,
"attn_metadata": attn_metadata,
"intermediate_tensors": intermediate_tensors,
"inputs_embeds": inputs_embeds,
}
if self.is_mono:
forward_kwargs.update({"visual_token_mask": visual_token_mask})
hidden_states = self.language_model.model(**forward_kwargs)
return hidden_states
def compute_logits(
self,
hidden_states: torch.Tensor,
sampling_metadata: SamplingMetadata,
) -> Optional[torch.Tensor]:
return self.language_model.compute_logits(hidden_states,
sampling_metadata)
def sample(
self,
logits: torch.Tensor,
sampling_metadata: SamplingMetadata,
) -> Optional[SamplerOutput]:
return self.language_model.sample(logits, sampling_metadata)
def load_weights(self, weights: Iterable[Tuple[str, torch.Tensor]]):
loader = AutoWeightsLoader(self)
loader.load_weights(weights)