116 lines
4.4 KiB
Python
116 lines
4.4 KiB
Python
import base64
|
|
import mimetypes
|
|
from tempfile import NamedTemporaryFile
|
|
from typing import Dict, Tuple
|
|
|
|
import numpy as np
|
|
import pytest
|
|
from PIL import Image
|
|
from transformers import AutoConfig, AutoTokenizer
|
|
|
|
from vllm.multimodal.utils import (async_fetch_image, fetch_image,
|
|
repeat_and_pad_placeholder_tokens)
|
|
|
|
# Test different image extensions (JPG/PNG) and formats (gray/RGB/RGBA)
|
|
TEST_IMAGE_URLS = [
|
|
"https://upload.wikimedia.org/wikipedia/commons/thumb/d/dd/Gfp-wisconsin-madison-the-nature-boardwalk.jpg/2560px-Gfp-wisconsin-madison-the-nature-boardwalk.jpg",
|
|
"https://upload.wikimedia.org/wikipedia/commons/f/fa/Grayscale_8bits_palette_sample_image.png",
|
|
"https://upload.wikimedia.org/wikipedia/commons/thumb/9/91/Venn_diagram_rgb.svg/1280px-Venn_diagram_rgb.svg.png",
|
|
"https://upload.wikimedia.org/wikipedia/commons/0/0b/RGBA_comp.png",
|
|
]
|
|
|
|
|
|
@pytest.fixture(scope="module")
|
|
def url_images() -> Dict[str, Image.Image]:
|
|
return {image_url: fetch_image(image_url) for image_url in TEST_IMAGE_URLS}
|
|
|
|
|
|
def get_supported_suffixes() -> Tuple[str, ...]:
|
|
# We should at least test the file types mentioned in GPT-4 with Vision
|
|
OPENAI_SUPPORTED_SUFFIXES = ('.png', '.jpeg', '.jpg', '.webp', '.gif')
|
|
|
|
# Additional file types that are supported by us
|
|
EXTRA_SUPPORTED_SUFFIXES = ('.bmp', '.tiff')
|
|
|
|
return OPENAI_SUPPORTED_SUFFIXES + EXTRA_SUPPORTED_SUFFIXES
|
|
|
|
|
|
def _image_equals(a: Image.Image, b: Image.Image) -> bool:
|
|
return (np.asarray(a) == np.asarray(b.convert(a.mode))).all()
|
|
|
|
|
|
@pytest.mark.asyncio
|
|
@pytest.mark.parametrize("image_url", TEST_IMAGE_URLS)
|
|
async def test_fetch_image_http(image_url: str):
|
|
image_sync = fetch_image(image_url)
|
|
image_async = await async_fetch_image(image_url)
|
|
assert _image_equals(image_sync, image_async)
|
|
|
|
|
|
@pytest.mark.asyncio
|
|
@pytest.mark.parametrize("image_url", TEST_IMAGE_URLS)
|
|
@pytest.mark.parametrize("suffix", get_supported_suffixes())
|
|
async def test_fetch_image_base64(url_images: Dict[str, Image.Image],
|
|
image_url: str, suffix: str):
|
|
url_image = url_images[image_url]
|
|
|
|
try:
|
|
mime_type = Image.MIME[Image.registered_extensions()[suffix]]
|
|
except KeyError:
|
|
try:
|
|
mime_type = mimetypes.types_map[suffix]
|
|
except KeyError:
|
|
pytest.skip('No MIME type')
|
|
|
|
with NamedTemporaryFile(suffix=suffix) as f:
|
|
try:
|
|
url_image.save(f.name)
|
|
except Exception as e:
|
|
if e.args[0] == 'cannot write mode RGBA as JPEG':
|
|
pytest.skip('Conversion not supported')
|
|
|
|
raise
|
|
|
|
base64_image = base64.b64encode(f.read()).decode("utf-8")
|
|
data_url = f"data:{mime_type};base64,{base64_image}"
|
|
|
|
data_image_sync = fetch_image(data_url)
|
|
if _image_equals(url_image, Image.open(f)):
|
|
assert _image_equals(url_image, data_image_sync)
|
|
else:
|
|
pass # Lossy format; only check that image can be opened
|
|
|
|
data_image_async = await async_fetch_image(data_url)
|
|
assert _image_equals(data_image_sync, data_image_async)
|
|
|
|
|
|
@pytest.mark.parametrize("model", ["llava-hf/llava-v1.6-mistral-7b-hf"])
|
|
def test_repeat_and_pad_placeholder_tokens(model):
|
|
config = AutoConfig.from_pretrained(model)
|
|
image_token_id = config.image_token_index
|
|
|
|
tokenizer = AutoTokenizer.from_pretrained(model)
|
|
|
|
test_cases = [
|
|
("<image>", 2, "<image><image>", [32000, 32000]),
|
|
("<image><image>", 2, "<image><image><image>", [32000, 32000, 32000]),
|
|
("<image><image>", [3, 2], "<image><image><image><image><image>",
|
|
[32000, 32000, 32000, 32000, 32000]),
|
|
("Image:<image>Image:<image>!", [3, 2],
|
|
"Image:<image><image><image>Image:<image><image>!",
|
|
[9833, 28747, 32000, 32000, 32000, 9833, 28747, 32000, 32000, 918]),
|
|
("<image>", [3, 2], "<image><image><image>", [32000, 32000, 32000]),
|
|
]
|
|
|
|
for prompt, repeat_count, expected_prompt, expected_token_ids in test_cases:
|
|
new_prompt, new_token_ids = repeat_and_pad_placeholder_tokens(
|
|
tokenizer=tokenizer,
|
|
prompt=prompt,
|
|
prompt_token_ids=tokenizer.encode(prompt,
|
|
add_special_tokens=False),
|
|
placeholder_token_id=image_token_id,
|
|
repeat_count=repeat_count,
|
|
)
|
|
assert new_prompt == expected_prompt
|
|
assert new_token_ids == expected_token_ids
|