Cyrus Leung 09e974d483
[Bugfix] Check dimensions of multimodal embeddings in V1 (#15816)
Signed-off-by: DarkLight1337 <tlleungac@connect.ust.hk>
2025-03-31 09:01:35 -07:00

226 lines
8.2 KiB
Python

# SPDX-License-Identifier: Apache-2.0
from abc import ABC, abstractmethod
from collections.abc import Sequence
from typing import Final, Generic, Optional, Protocol, TypeVar, Union, cast
import torch
from transformers import PretrainedConfig
import vllm.envs as envs
from vllm.attention.selector import (backend_name_to_enum,
get_global_forced_attn_backend)
from vllm.jsontree import JSONTree, json_map_leaves
from vllm.logger import init_logger
from vllm.platforms import _Backend, current_platform
from .interfaces import MultiModalEmbeddings
logger = init_logger(__name__)
_C = TypeVar("_C", bound=PretrainedConfig)
class VisionEncoderInfo(ABC, Generic[_C]):
def __init__(self, vision_config: _C) -> None:
super().__init__()
self.vision_config = vision_config
@abstractmethod
def get_num_image_tokens(
self,
*,
image_width: int,
image_height: int,
) -> int:
raise NotImplementedError
@abstractmethod
def get_max_image_tokens(self) -> int:
raise NotImplementedError
@abstractmethod
def get_image_size(self) -> int:
raise NotImplementedError
@abstractmethod
def get_patch_size(self) -> int:
raise NotImplementedError
@abstractmethod
def get_patch_grid_length(self) -> int:
raise NotImplementedError
class VisionLanguageConfig(Protocol):
vision_config: Final[PretrainedConfig]
def get_vision_encoder_info(
hf_config: VisionLanguageConfig) -> VisionEncoderInfo:
# Avoid circular imports
from .clip import CLIPEncoderInfo, CLIPVisionConfig
from .pixtral import PixtralHFEncoderInfo, PixtralVisionConfig
from .siglip import SiglipEncoderInfo, SiglipVisionConfig
vision_config = hf_config.vision_config
if isinstance(vision_config, CLIPVisionConfig):
return CLIPEncoderInfo(vision_config)
if isinstance(vision_config, PixtralVisionConfig):
return PixtralHFEncoderInfo(vision_config)
if isinstance(vision_config, SiglipVisionConfig):
return SiglipEncoderInfo(vision_config)
msg = f"Unsupported vision config: {type(vision_config)}"
raise NotImplementedError(msg)
def get_vit_attn_backend(support_fa: bool = False) -> _Backend:
"""
Get the available attention backend for Vision Transformer.
"""
# TODO(Isotr0py): Remove `support_fa` after support FA for all ViTs attn.
selected_backend: Optional[_Backend] = get_global_forced_attn_backend()
if selected_backend is None:
backend_by_env_var: Optional[str] = envs.VLLM_ATTENTION_BACKEND
if backend_by_env_var is not None:
selected_backend = backend_name_to_enum(backend_by_env_var)
if selected_backend is None:
if current_platform.is_cuda():
device_available = current_platform.has_device_capability(80)
if device_available and support_fa:
from transformers.utils import is_flash_attn_2_available
if is_flash_attn_2_available():
selected_backend = _Backend.FLASH_ATTN
else:
logger.warning_once(
"Current `vllm-flash-attn` has a bug inside vision "
"module, so we use xformers backend instead. You can "
"run `pip install flash-attn` to use flash-attention "
"backend.")
selected_backend = _Backend.XFORMERS
else:
# For Volta and Turing GPUs, use xformers instead.
selected_backend = _Backend.XFORMERS
else:
# Default to torch SDPA for other non-GPU platforms.
selected_backend = _Backend.TORCH_SDPA
return selected_backend
def resolve_visual_encoder_outputs(
encoder_outputs: Union[torch.Tensor, list[torch.Tensor]],
feature_sample_layers: Optional[list[int]],
post_layer_norm: Optional[torch.nn.LayerNorm],
max_possible_layers: int,
) -> torch.Tensor:
"""Given the outputs a visual encoder module that may correspond to the
output of the last layer, or a list of hidden states to be stacked,
handle post normalization and resolve it into a single output tensor.
Args:
encoder_outputs: Output of encoder's last layer or all hidden states.
feature_sample_layers: Optional layer indices to grab from the encoder
outputs; if provided, encoder outputs must be a list.
post_layer_norm: Post norm to apply to the output of the encoder.
max_possible_layers: Total layers in the fully loaded visual encoder.
"""
if feature_sample_layers is None:
if post_layer_norm is not None:
return post_layer_norm(encoder_outputs)
return encoder_outputs
# Get the hidden states corresponding to the layer indices.
# Negative values are relative to the full visual encoder,
# so offset them depending on how many layers were loaded.
# NOTE: this assumes that encoder_outputs is a list containing
# the inputs to the visual encoder, followed by the hidden states
# of each layer.
num_loaded_layers = len(encoder_outputs) - 1
offset = max_possible_layers - num_loaded_layers
hs_pool = [
encoder_outputs[layer_idx]
if layer_idx >= 0 else encoder_outputs[layer_idx + offset]
for layer_idx in feature_sample_layers
]
# Apply post-norm on the final hidden state if we are using it
uses_last_layer = feature_sample_layers[-1] in (len(hs_pool) - 1, -1)
if post_layer_norm is not None and uses_last_layer:
hs_pool[-1] = post_layer_norm(encoder_outputs)
return torch.cat(hs_pool, dim=-1)
def scatter_patch_features(
patches: Union[torch.Tensor, Sequence[torch.Tensor]],
embed_is_patch: Union[torch.Tensor, Sequence[torch.Tensor]],
) -> tuple[torch.Tensor, ...]:
"""
Scatter the patch features into a contiguous tensor that corresponds
to the embedding tokens defined by the multimodal processor.
The rest of the values in the tensor are set to NaN so that they
can be filtered out by :func`select_patch_features`.
Args:
patches: The patch features for each image.
Shape: `(num_images, <patch_dims>, feature_depth)`
embed_is_patch: A boolean mask indicating which image embeddings
correspond to patch tokens for each image.
Shape: `(num_images, num_embeds)`
Note:
The original code only considers patch tokens as feature
tokens, but our processor considers all image-related tokens
as feature tokens because the feature tokens need to be
consecutive in `input_ids`.
Example:
A simplified example for one image:
.. code-block::
Embedding tokens (from HF processor):
[<start> <patch> <patch> <col> <patch> <patch> <col> <end> ]
embed_is_patch (from HF processor):
[ False True True False True True False False ]
Encoder outputs (from model):
[ p1 p2 p3 p4 ]
The resulting embedding tensor is:
[ nan p1 p2 nan p3 p4 nan nan ]
"""
if len(patches) != len(embed_is_patch):
raise ValueError(f"Inconsistent num_images: {len(patches)=} vs. "
f"{len(embed_is_patch)=}")
def get_embed_one(patches_one: torch.Tensor, e_is_patch: torch.Tensor):
embed_one = patches_one.new_full(
(e_is_patch.shape[0], patches_one.shape[-1]),
fill_value=torch.nan,
)
embed_one[e_is_patch] = patches_one
return embed_one
return tuple(
get_embed_one(patches_one, e_is_patch)
for patches_one, e_is_patch in zip(patches, embed_is_patch))
def select_patch_features(
multimodal_embeddings: MultiModalEmbeddings) -> MultiModalEmbeddings:
"""
Given the outputs of :func:`scatter_patch_features`, return only
the values that correspond to patch features.
"""
selected_features = json_map_leaves(
lambda x: x[~x.isnan()].view(-1, *x.shape[1:]),
cast(JSONTree[torch.Tensor], multimodal_embeddings),
)
return cast(MultiModalEmbeddings, selected_features)