vllm/tests/tool_use/test_jamba_tool_parser.py
Russell Bryant e489ad7a21
[Misc] Add SPDX-License-Identifier headers to python source files (#12628)
- **Add SPDX license headers to python source files**
- **Check for SPDX headers using pre-commit**

commit 9d7ef44c3cfb72ca4c32e1c677d99259d10d4745
Author: Russell Bryant <rbryant@redhat.com>
Date:   Fri Jan 31 14:18:24 2025 -0500

    Add SPDX license headers to python source files
    
This commit adds SPDX license headers to python source files as
recommended to
the project by the Linux Foundation. These headers provide a concise way
that is
both human and machine readable for communicating license information
for each
source file. It helps avoid any ambiguity about the license of the code
and can
    also be easily used by tools to help manage license compliance.
    
The Linux Foundation runs license scans against the codebase to help
ensure
    we are in compliance with the licenses of the code we use, including
dependencies. Having these headers in place helps that tool do its job.
    
    More information can be found on the SPDX site:
    
    - https://spdx.dev/learn/handling-license-info/
    
    Signed-off-by: Russell Bryant <rbryant@redhat.com>

commit 5a1cf1cb3b80759131c73f6a9dddebccac039dea
Author: Russell Bryant <rbryant@redhat.com>
Date:   Fri Jan 31 14:36:32 2025 -0500

    Check for SPDX headers using pre-commit
    
    Signed-off-by: Russell Bryant <rbryant@redhat.com>

---------

Signed-off-by: Russell Bryant <rbryant@redhat.com>
2025-02-02 11:58:18 -08:00

278 lines
12 KiB
Python

# SPDX-License-Identifier: Apache-2.0
import json
from typing import Generator, List, Optional
import partial_json_parser
import pytest
from partial_json_parser.core.options import Allow
from vllm.entrypoints.openai.protocol import (DeltaMessage, FunctionCall,
ToolCall)
from vllm.entrypoints.openai.tool_parsers import JambaToolParser
from vllm.transformers_utils.detokenizer import detokenize_incrementally
from vllm.transformers_utils.tokenizer import AnyTokenizer, get_tokenizer
MODEL = "ai21labs/Jamba-tiny-dev"
@pytest.fixture(scope="module")
def jamba_tokenizer():
return get_tokenizer(tokenizer_name=MODEL)
@pytest.fixture
def jamba_tool_parser(jamba_tokenizer):
return JambaToolParser(jamba_tokenizer)
def assert_tool_calls(actual_tool_calls: List[ToolCall],
expected_tool_calls: List[ToolCall]):
assert len(actual_tool_calls) == len(expected_tool_calls)
for actual_tool_call, expected_tool_call in zip(actual_tool_calls,
expected_tool_calls):
assert isinstance(actual_tool_call.id, str)
assert len(actual_tool_call.id) > 16
assert actual_tool_call.type == "function"
assert actual_tool_call.function == expected_tool_call.function
def stream_delta_message_generator(
jamba_tool_parser: JambaToolParser, jamba_tokenizer: AnyTokenizer,
model_output: str) -> Generator[DeltaMessage, None, None]:
all_token_ids = jamba_tokenizer.encode(model_output,
add_special_tokens=False)
previous_text = ""
previous_tokens = None
prefix_offset = 0
read_offset = 0
for i, delta_token in enumerate(all_token_ids):
delta_token_ids = [delta_token]
previous_token_ids = all_token_ids[:i]
current_token_ids = all_token_ids[:i + 1]
(new_tokens, delta_text, new_prefix_offset,
new_read_offset) = detokenize_incrementally(
tokenizer=jamba_tokenizer,
all_input_ids=current_token_ids,
prev_tokens=previous_tokens,
prefix_offset=prefix_offset,
read_offset=read_offset,
skip_special_tokens=False,
spaces_between_special_tokens=True,
)
current_text = previous_text + delta_text
delta_message = jamba_tool_parser.extract_tool_calls_streaming(
previous_text,
current_text,
delta_text,
previous_token_ids,
current_token_ids,
delta_token_ids,
request=None, # type: ignore[arg-type]
)
if delta_message:
yield delta_message
previous_text = current_text
previous_tokens = previous_tokens + new_tokens if previous_tokens\
else new_tokens
prefix_offset = new_prefix_offset
read_offset = new_read_offset
def test_extract_tool_calls_no_tools(jamba_tool_parser):
model_output = "This is a test"
extracted_tool_calls = jamba_tool_parser.extract_tool_calls(
model_output, request=None) # type: ignore[arg-type]
assert not extracted_tool_calls.tools_called
assert extracted_tool_calls.tool_calls == []
assert extracted_tool_calls.content == model_output
@pytest.mark.parametrize(
ids=[
"single_tool",
"single_tool_with_content",
"parallel_tools",
],
argnames=["model_output", "expected_tool_calls", "expected_content"],
argvalues=[
(
''' <tool_calls>[\n {"name": "get_current_weather", "arguments": {"city": "Dallas", "state": "TX", "unit": "fahrenheit"}}\n]</tool_calls>''', # noqa: E501
[
ToolCall(function=FunctionCall(name="get_current_weather",
arguments=json.dumps(
{
"city": "Dallas",
"state": "TX",
"unit": "fahrenheit"
})))
],
None),
(
''' Sure! let me call the tool for you.<tool_calls>[\n {"name": "get_current_weather", "arguments": {"city": "Dallas", "state": "TX", "unit": "fahrenheit"}}\n]</tool_calls>''', # noqa: E501
[
ToolCall(function=FunctionCall(name="get_current_weather",
arguments=json.dumps(
{
"city": "Dallas",
"state": "TX",
"unit": "fahrenheit"
})))
],
" Sure! let me call the tool for you."),
(
''' <tool_calls>[\n {"name": "get_current_weather", "arguments": {"city": "Dallas", "state": "TX", "unit": "fahrenheit"}},\n {"name": "get_current_weather", "arguments": {"city": "Orlando", "state": "FL", "unit": "fahrenheit"}}\n]</tool_calls>''', # noqa: E501
[
ToolCall(function=FunctionCall(name="get_current_weather",
arguments=json.dumps(
{
"city": "Dallas",
"state": "TX",
"unit": "fahrenheit"
}))),
ToolCall(function=FunctionCall(name="get_current_weather",
arguments=json.dumps(
{
"city": "Orlando",
"state": "FL",
"unit": "fahrenheit"
})))
],
None)
],
)
def test_extract_tool_calls(jamba_tool_parser, model_output,
expected_tool_calls, expected_content):
extracted_tool_calls = jamba_tool_parser.extract_tool_calls(
model_output, request=None) # type: ignore[arg-type]
assert extracted_tool_calls.tools_called
assert_tool_calls(extracted_tool_calls.tool_calls, expected_tool_calls)
assert extracted_tool_calls.content == expected_content
@pytest.mark.parametrize(
ids=[
"no_tools",
"single_tool",
"single_tool_with_content",
"parallel_tools",
],
argnames=["model_output", "expected_tool_calls", "expected_content"],
argvalues=[
('''This is a test''', [], '''This is a test'''),
(
''' <tool_calls>[\n {"name": "get_current_weather", "arguments": {"city": "Dallas", "state": "TX", "unit": "fahrenheit"}}\n]</tool_calls>''', # noqa: E501
[
ToolCall(function=FunctionCall(name="get_current_weather",
arguments=json.dumps(
{
"city": "Dallas",
"state": "TX",
"unit": "fahrenheit"
})))
],
" "),
(
''' Sure! let me call the tool for you.<tool_calls>[\n {"name": "get_current_weather", "arguments": {"city": "Dallas", "state": "TX", "unit": "fahrenheit"}}\n]</tool_calls>''', # noqa: E501
[
ToolCall(function=FunctionCall(name="get_current_weather",
arguments=json.dumps(
{
"city": "Dallas",
"state": "TX",
"unit": "fahrenheit"
})))
],
" Sure! let me call the tool for you."),
(
''' <tool_calls>[\n {"name": "get_current_weather", "arguments": {"city": "Dallas", "state": "TX", "unit": "fahrenheit"}},\n {"name": "get_current_weather", "arguments": {"city": "Orlando", "state": "FL", "unit": "fahrenheit"}}\n]</tool_calls>''', # noqa: E501
[
ToolCall(function=FunctionCall(name="get_current_weather",
arguments=json.dumps(
{
"city": "Dallas",
"state": "TX",
"unit": "fahrenheit"
}))),
ToolCall(function=FunctionCall(name="get_current_weather",
arguments=json.dumps(
{
"city": "Orlando",
"state": "FL",
"unit": "fahrenheit"
})))
],
" ")
],
)
def test_extract_tool_calls_streaming(jamba_tool_parser, jamba_tokenizer,
model_output, expected_tool_calls,
expected_content):
other_content: str = ''
function_names: List[str] = []
function_args_strs: List[str] = []
tool_call_idx: int = -1
tool_call_ids: List[Optional[str]] = []
for delta_message in stream_delta_message_generator(
jamba_tool_parser, jamba_tokenizer, model_output):
# role should never be streamed from tool parser
assert not delta_message.role
if delta_message.content:
other_content += delta_message.content
streamed_tool_calls = delta_message.tool_calls
if streamed_tool_calls and len(streamed_tool_calls) > 0:
# make sure only one diff is present - correct even for parallel
assert len(streamed_tool_calls) == 1
tool_call = streamed_tool_calls[0]
# if a new tool is being called, set up empty arguments
if tool_call.index != tool_call_idx:
tool_call_idx = tool_call.index
function_args_strs.append("")
tool_call_ids.append(None)
# if a tool call ID is streamed, make sure one hasn't been already
if tool_call.id and not tool_call_ids[tool_call.index]:
tool_call_ids[tool_call.index] = tool_call.id
# if parts of the function start being streamed
if tool_call.function:
# if the function name is defined, set it. it should be streamed
# IN ENTIRETY, exactly one time.
if tool_call.function.name:
assert isinstance(tool_call.function.name, str)
function_names.append(tool_call.function.name)
if tool_call.function.arguments:
# make sure they're a string and then add them to the list
assert isinstance(tool_call.function.arguments, str)
function_args_strs[
tool_call.index] += tool_call.function.arguments
assert other_content == expected_content
actual_tool_calls = [
ToolCall(id=tool_call_id,
function=FunctionCall(
name=function_name,
arguments=partial_json_parser.ensure_json(
function_args_str, Allow.OBJ | Allow.STR)))
for tool_call_id, function_name, function_args_str in zip(
tool_call_ids, function_names, function_args_strs)
]
assert_tool_calls(actual_tool_calls, expected_tool_calls)