
- **Add SPDX license headers to python source files** - **Check for SPDX headers using pre-commit** commit 9d7ef44c3cfb72ca4c32e1c677d99259d10d4745 Author: Russell Bryant <rbryant@redhat.com> Date: Fri Jan 31 14:18:24 2025 -0500 Add SPDX license headers to python source files This commit adds SPDX license headers to python source files as recommended to the project by the Linux Foundation. These headers provide a concise way that is both human and machine readable for communicating license information for each source file. It helps avoid any ambiguity about the license of the code and can also be easily used by tools to help manage license compliance. The Linux Foundation runs license scans against the codebase to help ensure we are in compliance with the licenses of the code we use, including dependencies. Having these headers in place helps that tool do its job. More information can be found on the SPDX site: - https://spdx.dev/learn/handling-license-info/ Signed-off-by: Russell Bryant <rbryant@redhat.com> commit 5a1cf1cb3b80759131c73f6a9dddebccac039dea Author: Russell Bryant <rbryant@redhat.com> Date: Fri Jan 31 14:36:32 2025 -0500 Check for SPDX headers using pre-commit Signed-off-by: Russell Bryant <rbryant@redhat.com> --------- Signed-off-by: Russell Bryant <rbryant@redhat.com>
125 lines
3.8 KiB
Python
125 lines
3.8 KiB
Python
# SPDX-License-Identifier: Apache-2.0
|
|
|
|
from typing import List
|
|
|
|
import pytest
|
|
|
|
import vllm
|
|
from tests.utils import fork_new_process_for_each_test
|
|
from vllm.assets.image import ImageAsset
|
|
from vllm.lora.request import LoRARequest
|
|
from vllm.platforms import current_platform
|
|
|
|
MODEL_PATH = "openbmb/MiniCPM-Llama3-V-2_5"
|
|
|
|
PROMPT_TEMPLATE = (
|
|
"<|begin_of_text|><|start_header_id|>user<|end_header_id|>\n\n"
|
|
"(<image>./</image>)\nWhat is in the image?<|eot_id|>"
|
|
"<|start_header_id|>assistant<|end_header_id|>\n\n")
|
|
|
|
IMAGE_ASSETS = [
|
|
ImageAsset("stop_sign"),
|
|
]
|
|
|
|
# After fine-tuning with LoRA, all generated content should start begin `A`.
|
|
EXPECTED_OUTPUT = [
|
|
"A red and white stop sign with a Chinese archway in the background featuring red lanterns and gold accents.", # noqa: E501
|
|
]
|
|
|
|
|
|
def do_sample(llm: vllm.LLM, lora_path: str, lora_id: int) -> List[str]:
|
|
sampling_params = vllm.SamplingParams(
|
|
temperature=0,
|
|
max_tokens=5,
|
|
stop_token_ids=[128001, 128009], # eos_id, eot_id
|
|
)
|
|
|
|
inputs = [{
|
|
"prompt": PROMPT_TEMPLATE,
|
|
"multi_modal_data": {
|
|
"image": asset.pil_image
|
|
},
|
|
} for asset in IMAGE_ASSETS]
|
|
|
|
outputs = llm.generate(
|
|
inputs,
|
|
sampling_params,
|
|
lora_request=LoRARequest(str(lora_id), lora_id, lora_path)
|
|
if lora_id else None,
|
|
)
|
|
# Print the outputs.
|
|
generated_texts: List[str] = []
|
|
for output in outputs:
|
|
generated_text = output.outputs[0].text.strip()
|
|
generated_texts.append(generated_text)
|
|
print(f"Generated text: {generated_text!r}")
|
|
return generated_texts
|
|
|
|
|
|
@pytest.mark.xfail(
|
|
current_platform.is_rocm(),
|
|
reason="MiniCPM-V dependency xformers incompatible with ROCm")
|
|
@fork_new_process_for_each_test
|
|
def test_minicpmv_lora(minicpmv_lora_files):
|
|
llm = vllm.LLM(
|
|
MODEL_PATH,
|
|
max_num_seqs=2,
|
|
enable_lora=True,
|
|
max_loras=2,
|
|
max_lora_rank=8,
|
|
enforce_eager=True,
|
|
trust_remote_code=True,
|
|
enable_chunked_prefill=True,
|
|
)
|
|
output1 = do_sample(llm, minicpmv_lora_files, lora_id=1)
|
|
for i in range(len(EXPECTED_OUTPUT)):
|
|
assert EXPECTED_OUTPUT[i].startswith(output1[i])
|
|
output2 = do_sample(llm, minicpmv_lora_files, lora_id=2)
|
|
for i in range(len(EXPECTED_OUTPUT)):
|
|
assert EXPECTED_OUTPUT[i].startswith(output2[i])
|
|
|
|
|
|
@pytest.mark.xfail(
|
|
current_platform.is_rocm(),
|
|
reason="MiniCPM-V dependency xformers incompatible with ROCm")
|
|
@fork_new_process_for_each_test
|
|
def test_minicpmv_tp4_wo_fully_sharded_loras(minicpmv_lora_files):
|
|
llm = vllm.LLM(
|
|
MODEL_PATH,
|
|
enable_lora=True,
|
|
max_num_seqs=2,
|
|
max_loras=4,
|
|
max_lora_rank=64,
|
|
tensor_parallel_size=4,
|
|
trust_remote_code=True,
|
|
enforce_eager=True,
|
|
enable_chunked_prefill=True,
|
|
)
|
|
output_tp = do_sample(llm, minicpmv_lora_files, lora_id=1)
|
|
for i in range(len(EXPECTED_OUTPUT)):
|
|
assert EXPECTED_OUTPUT[i].startswith(output_tp[i])
|
|
|
|
|
|
@pytest.mark.xfail(
|
|
current_platform.is_rocm(),
|
|
reason="MiniCPM-V dependency xformers incompatible with ROCm")
|
|
@fork_new_process_for_each_test
|
|
def test_minicpmv_tp4_fully_sharded_loras(minicpmv_lora_files):
|
|
llm = vllm.LLM(
|
|
MODEL_PATH,
|
|
enable_lora=True,
|
|
max_num_seqs=2,
|
|
max_loras=2,
|
|
max_lora_rank=8,
|
|
tensor_parallel_size=4,
|
|
trust_remote_code=True,
|
|
fully_sharded_loras=True,
|
|
enable_chunked_prefill=True,
|
|
)
|
|
output_tp = do_sample(llm, minicpmv_lora_files, lora_id=1)
|
|
for i in range(len(EXPECTED_OUTPUT)):
|
|
assert EXPECTED_OUTPUT[i].startswith(output_tp[i])
|
|
output_tp = do_sample(llm, minicpmv_lora_files, lora_id=2)
|
|
for i in range(len(EXPECTED_OUTPUT)):
|
|
assert EXPECTED_OUTPUT[i].startswith(output_tp[i])
|