vllm/tests/lora/test_gemma.py
2025-02-25 02:01:15 -08:00

68 lines
2.2 KiB
Python

# SPDX-License-Identifier: Apache-2.0
from typing import List
import pytest
import vllm
from vllm.lora.request import LoRARequest
from vllm.platforms import current_platform
MODEL_PATH = "google/gemma-7b"
def do_sample(llm: vllm.LLM, lora_path: str, lora_id: int) -> List[str]:
prompts = [
"Quote: Imagination is",
"Quote: Be yourself;",
"Quote: Painting is poetry that is seen rather than felt,",
]
sampling_params = vllm.SamplingParams(temperature=0, max_tokens=32)
outputs = llm.generate(
prompts,
sampling_params,
lora_request=LoRARequest(str(lora_id), lora_id, lora_path)
if lora_id else None)
# Print the outputs.
generated_texts: List[str] = []
for output in outputs:
prompt = output.prompt
generated_text = output.outputs[0].text.strip()
generated_texts.append(generated_text)
print(f"Prompt: {prompt!r}, Generated text: {generated_text!r}")
return generated_texts
@pytest.fixture(autouse=True)
def v1(run_with_both_engines_lora):
# Simple autouse wrapper to run both engines for each test
# This can be promoted up to conftest.py to run for every
# test in a package
pass
# The V1 lora test for this model requires more than 24GB.
@pytest.mark.skip_v1
@pytest.mark.xfail(current_platform.is_rocm(),
reason="There can be output mismatch on ROCm")
def test_gemma_lora(gemma_lora_files):
llm = vllm.LLM(MODEL_PATH,
max_model_len=1024,
enable_lora=True,
max_loras=4,
enable_chunked_prefill=True)
expected_lora_output = [
"more important than knowledge.\nAuthor: Albert Einstein\n",
"everyone else is already taken.\nAuthor: Oscar Wilde\n",
"and poetry is painting that is felt rather than seen.\n"
"Author: Leonardo da Vinci\n",
]
output1 = do_sample(llm, gemma_lora_files, lora_id=1)
for i in range(len(expected_lora_output)):
assert output1[i].startswith(expected_lora_output[i])
output2 = do_sample(llm, gemma_lora_files, lora_id=2)
for i in range(len(expected_lora_output)):
assert output2[i].startswith(expected_lora_output[i])