
- **Add SPDX license headers to python source files** - **Check for SPDX headers using pre-commit** commit 9d7ef44c3cfb72ca4c32e1c677d99259d10d4745 Author: Russell Bryant <rbryant@redhat.com> Date: Fri Jan 31 14:18:24 2025 -0500 Add SPDX license headers to python source files This commit adds SPDX license headers to python source files as recommended to the project by the Linux Foundation. These headers provide a concise way that is both human and machine readable for communicating license information for each source file. It helps avoid any ambiguity about the license of the code and can also be easily used by tools to help manage license compliance. The Linux Foundation runs license scans against the codebase to help ensure we are in compliance with the licenses of the code we use, including dependencies. Having these headers in place helps that tool do its job. More information can be found on the SPDX site: - https://spdx.dev/learn/handling-license-info/ Signed-off-by: Russell Bryant <rbryant@redhat.com> commit 5a1cf1cb3b80759131c73f6a9dddebccac039dea Author: Russell Bryant <rbryant@redhat.com> Date: Fri Jan 31 14:36:32 2025 -0500 Check for SPDX headers using pre-commit Signed-off-by: Russell Bryant <rbryant@redhat.com> --------- Signed-off-by: Russell Bryant <rbryant@redhat.com>
408 lines
14 KiB
Python
408 lines
14 KiB
Python
# SPDX-License-Identifier: Apache-2.0
|
|
"""Tests for the machete kernel.
|
|
|
|
Run `pytest tests/kernels/test_machete_mm.py`.
|
|
"""
|
|
|
|
import math
|
|
from dataclasses import dataclass, fields
|
|
from typing import List, Optional, Tuple
|
|
|
|
import pytest
|
|
import torch
|
|
|
|
from tests.kernels.utils import opcheck
|
|
from vllm import _custom_ops as ops
|
|
from vllm.model_executor.layers.quantization.utils.quant_utils import (
|
|
pack_rows, quantize_weights)
|
|
from vllm.platforms import current_platform
|
|
from vllm.scalar_type import ScalarType, scalar_types
|
|
|
|
CUDA_DEVICES = [
|
|
f"cuda:{i}" for i in range(1 if torch.cuda.device_count() == 1 else 2)
|
|
]
|
|
|
|
# TODO: in future PR refactor this and `is_quant_method_supported` in the kernel
|
|
# unit tests to a common utility function. Currently the use of
|
|
# `is_quant_method_supported` conflates kernels with quantization methods
|
|
# an assumption which is breaking down as quantizations methods can have
|
|
# have kernels and some kernels support multiple quantization methods.
|
|
IS_SUPPORTED_BY_GPU = current_platform.get_device_capability()[0] >= 9
|
|
|
|
MNK_SHAPES = [
|
|
(1, 128, 128),
|
|
(1, 512, 1024),
|
|
(1, 4096, 4096),
|
|
(1, 8192, 28672),
|
|
(13, 8192, 4096),
|
|
(26, 4096, 8192),
|
|
(64, 4096, 4096),
|
|
(64, 8192, 28672),
|
|
(257, 128, 4096),
|
|
(257, 4224, 4160),
|
|
(257, 4096, 4096),
|
|
(1024, 4096, 8192),
|
|
(1024, 8192, 4096),
|
|
]
|
|
|
|
GROUP_SIZES_TO_TEST: List[Optional[int]] = [128, -1]
|
|
|
|
|
|
@dataclass
|
|
class TypeConfig:
|
|
act_type: torch.dtype
|
|
weight_type: ScalarType
|
|
output_type: Optional[torch.dtype]
|
|
group_scale_type: Optional[torch.dtype]
|
|
group_zero_type: Optional[torch.dtype]
|
|
channel_scale_type: Optional[torch.dtype]
|
|
token_scale_type: Optional[torch.dtype]
|
|
|
|
|
|
@dataclass
|
|
class Tensors:
|
|
w_ref: torch.Tensor
|
|
a_ref: torch.Tensor
|
|
a: torch.Tensor
|
|
w_q: torch.Tensor
|
|
w_g_s: Optional[torch.Tensor]
|
|
w_g_zp: Optional[torch.Tensor]
|
|
w_ch_s: Optional[torch.Tensor]
|
|
w_tok_s: Optional[torch.Tensor]
|
|
|
|
|
|
# (Act Type, Weight Type, Output Type, Scale Type, ZeroPoints,
|
|
# Ch Scales Type, Tok Scales Type)
|
|
# NOTE: None "Scale Type" means the act type is floating point
|
|
# None "Output Type" means the output type is the same as the act type
|
|
TestTypeTuple = Tuple[List[torch.dtype], ScalarType, Optional[torch.dtype],
|
|
Optional[torch.dtype], bool]
|
|
TEST_TYPES = [
|
|
# GPTQ style
|
|
*(TypeConfig(act_type=a_type,
|
|
weight_type=w_type,
|
|
output_type=None,
|
|
group_scale_type=a_type,
|
|
group_zero_type=None,
|
|
channel_scale_type=None,
|
|
token_scale_type=None)
|
|
for w_type in [scalar_types.uint4b8, scalar_types.uint8b128]
|
|
for a_type in [torch.float16, torch.bfloat16]),
|
|
# AWQ style
|
|
*(TypeConfig(act_type=a_type,
|
|
weight_type=w_type,
|
|
output_type=None,
|
|
group_scale_type=a_type,
|
|
group_zero_type=a_type,
|
|
channel_scale_type=None,
|
|
token_scale_type=None)
|
|
for w_type in [scalar_types.uint4, scalar_types.uint8]
|
|
for a_type in [torch.float16, torch.bfloat16]),
|
|
# QQQ style
|
|
*(TypeConfig(act_type=torch.int8,
|
|
weight_type=scalar_types.uint4b8,
|
|
output_type=torch.float16,
|
|
group_scale_type=group_scale_type,
|
|
group_zero_type=None,
|
|
channel_scale_type=torch.float,
|
|
token_scale_type=torch.float)
|
|
for group_scale_type in [None, torch.float16]),
|
|
*(TypeConfig(act_type=torch.float8_e4m3fn,
|
|
weight_type=scalar_types.uint4b8,
|
|
output_type=torch.float16,
|
|
group_scale_type=group_scale_type,
|
|
group_zero_type=None,
|
|
channel_scale_type=torch.float,
|
|
token_scale_type=torch.float)
|
|
for group_scale_type in [None, torch.float16]),
|
|
]
|
|
|
|
# TODO: in future PR refactor this and `is_quant_method_supported` in the kernel
|
|
# unit tests to a common utility function. Currently the use of
|
|
# `is_quant_method_supported` conflates kernels with quantization methods
|
|
# an assumption which is breaking down as quantizations methods can have
|
|
# have kernels and some kernels support multiple quantization methods.
|
|
IS_SUPPORTED_BY_GPU = current_platform.has_device_capability(90)
|
|
|
|
|
|
def rand_data(shape, dtype=torch.float16, scale=1, offset=0):
|
|
if dtype.is_floating_point:
|
|
return (scale * torch.rand(shape, device="cuda") - offset).to(dtype)
|
|
else:
|
|
return torch.randint(-8, 7, shape, dtype=dtype, device="cuda")
|
|
|
|
|
|
def maybe_convert_zeropoints(zps: Optional[torch.Tensor], s: torch.Tensor):
|
|
return zps if zps is None else -1 * s * (zps.to(s.dtype))
|
|
|
|
|
|
def group_size_valid(shape: Tuple[int, int, int],
|
|
group_size: Optional[int]) -> bool:
|
|
return group_size is None or group_size == -1 or group_size % shape[2] == 0
|
|
|
|
|
|
def machete_quantize_and_pack(atype: torch.dtype,
|
|
w: torch.Tensor,
|
|
wtype: ScalarType,
|
|
stype: Optional[torch.dtype],
|
|
group_size: Optional[int],
|
|
zero_points: bool = False):
|
|
assert wtype.is_integer(), "TODO: support floating point weights"
|
|
|
|
w_ref, w_q, w_s, w_zp = quantize_weights(
|
|
w,
|
|
wtype,
|
|
group_size=group_size,
|
|
zero_points=zero_points,
|
|
# to match how the kernel applies zps
|
|
ref_zero_points_after_scales=True)
|
|
|
|
w_q = pack_rows(w_q, wtype.size_bits, *w_q.shape)
|
|
w_q = w_q.t().contiguous().t() # convert to col major
|
|
|
|
w_q_machete = ops.machete_prepack_B(w_q, atype, wtype, stype)
|
|
opcheck(torch.ops._C.machete_prepack_B, (w_q, atype, wtype.id, stype))
|
|
|
|
return w_ref, w_q_machete, w_s, w_zp
|
|
|
|
|
|
def create_test_tensors(shape: Tuple[int, int, int],
|
|
types: TypeConfig,
|
|
group_size: Optional[int],
|
|
subset_stride_factor: Optional[int] = None) -> Tensors:
|
|
m, n, k = shape
|
|
factor = subset_stride_factor or 1
|
|
|
|
print("create_test_tensors, shape:", shape, "types:", types, "group_size:",
|
|
group_size)
|
|
|
|
a = rand_data((m * factor, k * factor), types.act_type, scale=3, offset=2)
|
|
w = rand_data((k * factor, n * factor), types.act_type, scale=3, offset=1)
|
|
|
|
if factor > 1:
|
|
a = a[0:m, 0:k]
|
|
w = w[0:k, 0:n]
|
|
|
|
if types.group_scale_type is not None:
|
|
w = w.to(types.group_scale_type)
|
|
if w.dtype.itemsize == 1:
|
|
w = w.to(torch.float16)
|
|
|
|
w_ref, w_q_packed, w_s, w_zp = machete_quantize_and_pack(
|
|
a.dtype, w, types.weight_type, types.group_scale_type, group_size,
|
|
types.group_zero_type is not None)
|
|
|
|
if not a.dtype.is_floating_point:
|
|
aiinfo = torch.iinfo(a.dtype)
|
|
w_ref = w_ref.round().clamp(aiinfo.min, aiinfo.max)
|
|
|
|
a_ref = a.to(torch.float32)
|
|
w_ref = w_ref.to(torch.float32)
|
|
|
|
w_ch_s = None if types.channel_scale_type is None else\
|
|
rand_data((n,), types.channel_scale_type)
|
|
w_tok_s = None if types.token_scale_type is None else\
|
|
rand_data((m,), types.token_scale_type)
|
|
|
|
return Tensors(w_ref=w_ref,
|
|
a_ref=a_ref,
|
|
a=a,
|
|
w_q=w_q_packed,
|
|
w_g_s=w_s,
|
|
w_g_zp=maybe_convert_zeropoints(w_zp, w_s),
|
|
w_ch_s=w_ch_s,
|
|
w_tok_s=w_tok_s)
|
|
|
|
|
|
# None stype means scales use the same dtype as a
|
|
def machete_mm_test_helper(types: TypeConfig,
|
|
tensors: Tensors,
|
|
group_size: Optional[int] = None,
|
|
schedule: Optional[str] = None):
|
|
output_ref = torch.matmul(tensors.a_ref, tensors.w_ref)
|
|
output_ref_type = output_ref.dtype
|
|
|
|
if tensors.w_ch_s is not None:
|
|
output_ref = (output_ref.to(tensors.w_ch_s.dtype) *
|
|
tensors.w_ch_s.unsqueeze(0)).to(output_ref_type)
|
|
if tensors.w_tok_s is not None:
|
|
output_ref = (output_ref.to(tensors.w_tok_s.dtype) *
|
|
tensors.w_tok_s.unsqueeze(1)).to(output_ref_type)
|
|
|
|
output = ops.machete_mm(
|
|
a=tensors.a,
|
|
b_q=tensors.w_q,
|
|
b_type=types.weight_type,
|
|
b_group_scales=tensors.w_g_s,
|
|
b_group_zeros=tensors.w_g_zp,
|
|
b_group_size=group_size,
|
|
b_channel_scales=tensors.w_ch_s,
|
|
a_token_scales=tensors.w_tok_s,
|
|
out_type=types.output_type,
|
|
schedule=schedule,
|
|
)
|
|
|
|
print(output)
|
|
print(output_ref)
|
|
|
|
# Relax atol as our reduction dim becomes larger (more rounding error)
|
|
# Relax atol when we have zeropoints since the way machete applies
|
|
# zeropoints (after scales) causes noise around 0
|
|
atol = 1 if tensors.w_g_zp is not None\
|
|
else min(5e-2 * math.sqrt(tensors.a.shape[1]), 1)
|
|
rtol = 1e-1 if tensors.a.element_size() >= 2 else 2e-1
|
|
torch.testing.assert_close(output,
|
|
output_ref.to(output.dtype),
|
|
rtol=rtol,
|
|
atol=atol)
|
|
|
|
|
|
@pytest.mark.skipif(not IS_SUPPORTED_BY_GPU,
|
|
reason="Machete is not supported on this GPU type.")
|
|
@pytest.mark.parametrize("shape",
|
|
MNK_SHAPES,
|
|
ids=lambda x: "x".join(str(v) for v in x))
|
|
@pytest.mark.parametrize("types", TEST_TYPES)
|
|
def test_machete_all_schedules(shape, types: TypeConfig):
|
|
|
|
group_sizes: List[Optional[int]] = []
|
|
if types.group_scale_type is None:
|
|
group_sizes = [None]
|
|
else:
|
|
group_sizes = GROUP_SIZES_TO_TEST
|
|
|
|
for group_size in group_sizes:
|
|
if not group_size_valid(shape, group_size):
|
|
continue
|
|
|
|
tensors = create_test_tensors(shape, types, group_size)
|
|
print(f"MNK = {shape}")
|
|
for schedule in ops.machete_supported_schedules(
|
|
types.act_type,
|
|
types.weight_type,
|
|
group_scales_type=types.group_scale_type,
|
|
group_zeros_type=types.group_scale_type,
|
|
out_type=types.output_type):
|
|
print(f"Testing schedule {schedule}")
|
|
machete_mm_test_helper(types, tensors, group_size, schedule)
|
|
|
|
|
|
@pytest.mark.skipif(not IS_SUPPORTED_BY_GPU,
|
|
reason="Machete is not supported on this GPU type.")
|
|
@pytest.mark.parametrize("shape",
|
|
MNK_SHAPES,
|
|
ids=lambda x: "x".join(str(v) for v in x))
|
|
@pytest.mark.parametrize("types", TEST_TYPES)
|
|
def test_machete_heuristic(shape, types: TypeConfig):
|
|
group_sizes: List[Optional[int]] = []
|
|
if types.group_scale_type is None:
|
|
group_sizes = [None]
|
|
else:
|
|
group_sizes = GROUP_SIZES_TO_TEST
|
|
|
|
for group_size in group_sizes:
|
|
if not group_size_valid(shape, group_size):
|
|
continue
|
|
|
|
tensors = create_test_tensors(shape, types, group_size)
|
|
machete_mm_test_helper(types, tensors, group_size)
|
|
|
|
|
|
# Test working on other devices
|
|
@pytest.mark.skipif(not IS_SUPPORTED_BY_GPU,
|
|
reason="Machete is not supported on this GPU type.")
|
|
@pytest.mark.parametrize("device", CUDA_DEVICES)
|
|
def test_machete_devices(device: str):
|
|
group_size = 128
|
|
|
|
type_config = TypeConfig(act_type=torch.float16,
|
|
weight_type=scalar_types.uint4b8,
|
|
output_type=None,
|
|
group_scale_type=torch.float16,
|
|
group_zero_type=None,
|
|
channel_scale_type=None,
|
|
token_scale_type=None)
|
|
|
|
tensors = create_test_tensors((512, 4096, 4096), type_config, group_size)
|
|
|
|
for field in fields(Tensors):
|
|
tensor = getattr(tensors, field.name)
|
|
if isinstance(tensor, torch.Tensor):
|
|
setattr(tensors, field.name, tensor.to(device))
|
|
|
|
machete_mm_test_helper(type_config, tensors, group_size)
|
|
|
|
|
|
# Test working with a subset of A and B
|
|
@pytest.mark.skipif(not IS_SUPPORTED_BY_GPU,
|
|
reason="Machete is not supported on this GPU type.")
|
|
def test_machete_subset():
|
|
group_size = 128
|
|
|
|
type_config = TypeConfig(act_type=torch.float16,
|
|
weight_type=scalar_types.uint4b8,
|
|
output_type=None,
|
|
group_scale_type=torch.float16,
|
|
group_zero_type=None,
|
|
channel_scale_type=None,
|
|
token_scale_type=None)
|
|
|
|
tensors = create_test_tensors((512, 4096, 4096),
|
|
type_config,
|
|
group_size,
|
|
subset_stride_factor=2)
|
|
machete_mm_test_helper(type_config, tensors, group_size)
|
|
|
|
|
|
# Test to make sure cuda graphs work
|
|
class MacheteLayer(torch.nn.Module):
|
|
|
|
def __init__(self, **kwargs):
|
|
super().__init__()
|
|
self.kwargs = kwargs
|
|
|
|
def forward(self, a):
|
|
return ops.machete_mm(a=a, **self.kwargs)
|
|
|
|
|
|
@pytest.mark.skipif(not IS_SUPPORTED_BY_GPU,
|
|
reason="Machete is not supported on this GPU type.")
|
|
def test_machete_cuda_graph():
|
|
m, n, k = 512, 4096, 4096
|
|
|
|
a = rand_data((m, k), torch.float16)
|
|
b = rand_data((k, n), torch.float16)
|
|
wtype = scalar_types.uint4b8
|
|
stype = torch.float16
|
|
group_size = 128
|
|
zero_points = False
|
|
|
|
w_ref, w_q_packed, w_s, w_zp = machete_quantize_and_pack(
|
|
a.dtype, b, wtype, stype, group_size, zero_points)
|
|
|
|
# Construct a trivial model with a single layer that calls a machete kernel
|
|
model = MacheteLayer(
|
|
b_q=w_q_packed,
|
|
b_type=wtype,
|
|
b_group_scales=w_s,
|
|
b_group_zeros=maybe_convert_zeropoints(w_zp, w_s),
|
|
b_group_size=group_size,
|
|
)
|
|
|
|
output_ref = torch.matmul(a, w_ref)
|
|
|
|
# Run the model with a cuda graph
|
|
stream = torch.cuda.Stream()
|
|
with torch.cuda.stream(stream):
|
|
g = torch.cuda.CUDAGraph()
|
|
with torch.cuda.graph(g):
|
|
output = model(a)
|
|
output.zero_()
|
|
g.replay()
|
|
|
|
# Relax atol as our reduction dim becomes larger (more rounding error)
|
|
# Relax atol when we have zeropoints since the way machete applies
|
|
# zeropoints (after scales) causes noise around 0
|
|
atol = 1 if zero_points else min(5e-2 * math.sqrt(k), 1)
|
|
torch.testing.assert_close(output, output_ref, rtol=1e-1, atol=atol)
|