
- **Add SPDX license headers to python source files** - **Check for SPDX headers using pre-commit** commit 9d7ef44c3cfb72ca4c32e1c677d99259d10d4745 Author: Russell Bryant <rbryant@redhat.com> Date: Fri Jan 31 14:18:24 2025 -0500 Add SPDX license headers to python source files This commit adds SPDX license headers to python source files as recommended to the project by the Linux Foundation. These headers provide a concise way that is both human and machine readable for communicating license information for each source file. It helps avoid any ambiguity about the license of the code and can also be easily used by tools to help manage license compliance. The Linux Foundation runs license scans against the codebase to help ensure we are in compliance with the licenses of the code we use, including dependencies. Having these headers in place helps that tool do its job. More information can be found on the SPDX site: - https://spdx.dev/learn/handling-license-info/ Signed-off-by: Russell Bryant <rbryant@redhat.com> commit 5a1cf1cb3b80759131c73f6a9dddebccac039dea Author: Russell Bryant <rbryant@redhat.com> Date: Fri Jan 31 14:36:32 2025 -0500 Check for SPDX headers using pre-commit Signed-off-by: Russell Bryant <rbryant@redhat.com> --------- Signed-off-by: Russell Bryant <rbryant@redhat.com>
174 lines
6.0 KiB
Python
174 lines
6.0 KiB
Python
# SPDX-License-Identifier: Apache-2.0
|
|
|
|
from typing import Optional, Tuple, Union
|
|
|
|
import pytest
|
|
import torch
|
|
|
|
import vllm._custom_ops as ops
|
|
from tests.kernels.utils import opcheck
|
|
from vllm.model_executor.layers.layernorm import RMSNorm
|
|
|
|
DTYPES = [torch.bfloat16, torch.float]
|
|
QUANT_DTYPES = [torch.int8, torch.float8_e4m3fn]
|
|
VEC_HIDDEN_SIZES = range(1024, 1030)
|
|
# Avoid combinatorial explosion with full Cartesian product
|
|
NUM_TOKENS_HIDDEN_SIZES = [
|
|
*[(1, i) for i in [1, 64, *VEC_HIDDEN_SIZES, 5120, 5137]],
|
|
*[(83, i) for i in [1, 1033, 2048, 5120]],
|
|
*[(2048, i) for i in [1, 64, *VEC_HIDDEN_SIZES, 5137]],
|
|
*[(4096, i) for i in [1, 64, 5137]],
|
|
]
|
|
|
|
ADD_RESIDUAL = [False, True]
|
|
SCALE_UBS = [True, False]
|
|
SEEDS = [0]
|
|
CUDA_DEVICES = [
|
|
f"cuda:{i}" for i in range(1 if torch.cuda.device_count() == 1 else 2)
|
|
]
|
|
|
|
EPS = 1e-6
|
|
|
|
## Helpers
|
|
|
|
|
|
def as_float32_tensor(x: Union[float, torch.tensor]) -> torch.tensor:
|
|
return torch.as_tensor(x, dtype=torch.float32, device='cuda')
|
|
|
|
|
|
def ref_rms_norm(rms_norm_layer: RMSNorm,
|
|
x: torch.Tensor,
|
|
residual: Optional[torch.Tensor]) \
|
|
-> Tuple[torch.Tensor, Optional[torch.Tensor]]:
|
|
if residual is not None:
|
|
residual = residual.clone()
|
|
out, residual = rms_norm_layer.forward_native(x, residual)
|
|
else:
|
|
out = rms_norm_layer.forward_native(x)
|
|
|
|
return out, residual
|
|
|
|
|
|
def ref_dynamic_per_token_quant(rms_norm_layer: RMSNorm,
|
|
x: torch.Tensor,
|
|
quant_dtype: torch.dtype,
|
|
residual: Optional[torch.Tensor],
|
|
scale_ub: Optional[torch.Tensor]) \
|
|
-> Tuple[torch.Tensor, torch.Tensor, Optional[torch.Tensor]]:
|
|
if scale_ub is not None:
|
|
assert quant_dtype == torch.float8_e4m3fn
|
|
|
|
# Norm
|
|
torch_out, residual = ref_rms_norm(rms_norm_layer, x, residual)
|
|
|
|
# Quant
|
|
if quant_dtype == torch.float8_e4m3fn:
|
|
torch_out, scales = ops.scaled_fp8_quant(torch_out,
|
|
scale_ub=scale_ub,
|
|
use_per_token_if_dynamic=True)
|
|
else:
|
|
assert quant_dtype == torch.int8
|
|
torch_out, scales = ops.scaled_int8_quant(torch_out)
|
|
|
|
return torch_out, scales, residual
|
|
|
|
|
|
def ref_impl(rms_norm_layer: RMSNorm,
|
|
x: torch.Tensor,
|
|
quant_dtype: torch.dtype,
|
|
residual: Optional[torch.Tensor],
|
|
scale_ub: Optional[torch.Tensor]) \
|
|
-> Tuple[torch.Tensor, torch.Tensor, Optional[torch.Tensor]]:
|
|
return ref_dynamic_per_token_quant(rms_norm_layer, x, quant_dtype,
|
|
residual, scale_ub)
|
|
|
|
|
|
def ops_dynamic_per_token_quant(weight: torch.Tensor,
|
|
x: torch.Tensor,
|
|
quant_dtype: torch.dtype,
|
|
residual: Optional[torch.Tensor],
|
|
scale_ub: Optional[torch.Tensor]) \
|
|
-> Tuple[torch.Tensor, torch.Tensor, Optional[torch.Tensor]]:
|
|
if residual is not None:
|
|
residual = residual.clone()
|
|
out, scales = ops.rms_norm_dynamic_per_token_quant(x, weight, EPS,
|
|
quant_dtype, scale_ub,
|
|
residual)
|
|
return out, scales, residual
|
|
|
|
|
|
def ops_impl(weight: torch.Tensor,
|
|
x: torch.Tensor,
|
|
quant_dtype: torch.dtype,
|
|
residual: Optional[torch.Tensor],
|
|
scale_ub: Optional[torch.Tensor]) \
|
|
-> Tuple[torch.Tensor, torch.Tensor, Optional[torch.Tensor]]:
|
|
return ops_dynamic_per_token_quant(weight, x, quant_dtype, residual,
|
|
scale_ub)
|
|
|
|
|
|
@pytest.mark.parametrize("num_tokens, hidden_size", NUM_TOKENS_HIDDEN_SIZES)
|
|
@pytest.mark.parametrize("add_residual", ADD_RESIDUAL)
|
|
@pytest.mark.parametrize("scale_ub", SCALE_UBS)
|
|
@pytest.mark.parametrize("dtype", DTYPES)
|
|
@pytest.mark.parametrize("quant_dtype", QUANT_DTYPES)
|
|
@pytest.mark.parametrize("seed", SEEDS)
|
|
@pytest.mark.parametrize("device", CUDA_DEVICES)
|
|
@torch.inference_mode()
|
|
def test_rms_norm(
|
|
num_tokens: int,
|
|
hidden_size: int,
|
|
add_residual: bool,
|
|
scale_ub: bool,
|
|
dtype: torch.dtype,
|
|
quant_dtype: torch.dtype,
|
|
seed: int,
|
|
device: str,
|
|
) -> None:
|
|
torch.random.manual_seed(seed)
|
|
if torch.cuda.is_available():
|
|
torch.cuda.manual_seed(seed)
|
|
torch.set_default_device(device)
|
|
|
|
if scale_ub is not None and quant_dtype != torch.float8_e4m3fn:
|
|
# skip
|
|
return
|
|
|
|
layer = RMSNorm(hidden_size, EPS).to(dtype=dtype)
|
|
|
|
# Make weights
|
|
layer.weight.data.normal_(mean=1.0, std=0.1)
|
|
|
|
# Make inputs
|
|
scale = 1 / (hidden_size)
|
|
x = torch.randn(num_tokens, hidden_size, dtype=dtype) * scale
|
|
residual = torch.randn_like(x) * scale if add_residual else None
|
|
if scale_ub is not None:
|
|
rms_x, _ = ref_rms_norm(layer, x, residual)
|
|
scale_ub = torch.mean(rms_x).to(dtype=torch.float32, device='cuda')
|
|
|
|
ref_out, ref_scales, ref_residual = \
|
|
ref_impl(layer, x, quant_dtype, residual, scale_ub)
|
|
ops_out, ops_scales, ops_residual = \
|
|
ops_impl(layer.weight, x, quant_dtype, residual, scale_ub)
|
|
|
|
assert ref_out.dtype == quant_dtype
|
|
assert ops_out.dtype == quant_dtype
|
|
assert torch.allclose(ref_scales, ops_scales)
|
|
if quant_dtype == torch.int8:
|
|
# big atol to account for round-off errors.
|
|
assert torch.allclose(ref_out, ops_out, atol=1)
|
|
else:
|
|
assert torch.allclose(ref_out.to(dtype=torch.float32),
|
|
ops_out.to(dtype=torch.float32))
|
|
if add_residual:
|
|
assert torch.allclose(ref_residual, ops_residual)
|
|
|
|
output = torch.empty_like(x, dtype=quant_dtype)
|
|
scales = torch.empty((x.numel() // x.shape[-1], 1),
|
|
device=x.device,
|
|
dtype=torch.float32)
|
|
|
|
opcheck(torch.ops._C.rms_norm_dynamic_per_token_quant,
|
|
(output, x, layer.weight, scales, 1e-5, scale_ub, residual))
|