vllm/tests/kernels/test_fused_quant_layernorm.py
Russell Bryant e489ad7a21
[Misc] Add SPDX-License-Identifier headers to python source files (#12628)
- **Add SPDX license headers to python source files**
- **Check for SPDX headers using pre-commit**

commit 9d7ef44c3cfb72ca4c32e1c677d99259d10d4745
Author: Russell Bryant <rbryant@redhat.com>
Date:   Fri Jan 31 14:18:24 2025 -0500

    Add SPDX license headers to python source files
    
This commit adds SPDX license headers to python source files as
recommended to
the project by the Linux Foundation. These headers provide a concise way
that is
both human and machine readable for communicating license information
for each
source file. It helps avoid any ambiguity about the license of the code
and can
    also be easily used by tools to help manage license compliance.
    
The Linux Foundation runs license scans against the codebase to help
ensure
    we are in compliance with the licenses of the code we use, including
dependencies. Having these headers in place helps that tool do its job.
    
    More information can be found on the SPDX site:
    
    - https://spdx.dev/learn/handling-license-info/
    
    Signed-off-by: Russell Bryant <rbryant@redhat.com>

commit 5a1cf1cb3b80759131c73f6a9dddebccac039dea
Author: Russell Bryant <rbryant@redhat.com>
Date:   Fri Jan 31 14:36:32 2025 -0500

    Check for SPDX headers using pre-commit
    
    Signed-off-by: Russell Bryant <rbryant@redhat.com>

---------

Signed-off-by: Russell Bryant <rbryant@redhat.com>
2025-02-02 11:58:18 -08:00

174 lines
6.0 KiB
Python

# SPDX-License-Identifier: Apache-2.0
from typing import Optional, Tuple, Union
import pytest
import torch
import vllm._custom_ops as ops
from tests.kernels.utils import opcheck
from vllm.model_executor.layers.layernorm import RMSNorm
DTYPES = [torch.bfloat16, torch.float]
QUANT_DTYPES = [torch.int8, torch.float8_e4m3fn]
VEC_HIDDEN_SIZES = range(1024, 1030)
# Avoid combinatorial explosion with full Cartesian product
NUM_TOKENS_HIDDEN_SIZES = [
*[(1, i) for i in [1, 64, *VEC_HIDDEN_SIZES, 5120, 5137]],
*[(83, i) for i in [1, 1033, 2048, 5120]],
*[(2048, i) for i in [1, 64, *VEC_HIDDEN_SIZES, 5137]],
*[(4096, i) for i in [1, 64, 5137]],
]
ADD_RESIDUAL = [False, True]
SCALE_UBS = [True, False]
SEEDS = [0]
CUDA_DEVICES = [
f"cuda:{i}" for i in range(1 if torch.cuda.device_count() == 1 else 2)
]
EPS = 1e-6
## Helpers
def as_float32_tensor(x: Union[float, torch.tensor]) -> torch.tensor:
return torch.as_tensor(x, dtype=torch.float32, device='cuda')
def ref_rms_norm(rms_norm_layer: RMSNorm,
x: torch.Tensor,
residual: Optional[torch.Tensor]) \
-> Tuple[torch.Tensor, Optional[torch.Tensor]]:
if residual is not None:
residual = residual.clone()
out, residual = rms_norm_layer.forward_native(x, residual)
else:
out = rms_norm_layer.forward_native(x)
return out, residual
def ref_dynamic_per_token_quant(rms_norm_layer: RMSNorm,
x: torch.Tensor,
quant_dtype: torch.dtype,
residual: Optional[torch.Tensor],
scale_ub: Optional[torch.Tensor]) \
-> Tuple[torch.Tensor, torch.Tensor, Optional[torch.Tensor]]:
if scale_ub is not None:
assert quant_dtype == torch.float8_e4m3fn
# Norm
torch_out, residual = ref_rms_norm(rms_norm_layer, x, residual)
# Quant
if quant_dtype == torch.float8_e4m3fn:
torch_out, scales = ops.scaled_fp8_quant(torch_out,
scale_ub=scale_ub,
use_per_token_if_dynamic=True)
else:
assert quant_dtype == torch.int8
torch_out, scales = ops.scaled_int8_quant(torch_out)
return torch_out, scales, residual
def ref_impl(rms_norm_layer: RMSNorm,
x: torch.Tensor,
quant_dtype: torch.dtype,
residual: Optional[torch.Tensor],
scale_ub: Optional[torch.Tensor]) \
-> Tuple[torch.Tensor, torch.Tensor, Optional[torch.Tensor]]:
return ref_dynamic_per_token_quant(rms_norm_layer, x, quant_dtype,
residual, scale_ub)
def ops_dynamic_per_token_quant(weight: torch.Tensor,
x: torch.Tensor,
quant_dtype: torch.dtype,
residual: Optional[torch.Tensor],
scale_ub: Optional[torch.Tensor]) \
-> Tuple[torch.Tensor, torch.Tensor, Optional[torch.Tensor]]:
if residual is not None:
residual = residual.clone()
out, scales = ops.rms_norm_dynamic_per_token_quant(x, weight, EPS,
quant_dtype, scale_ub,
residual)
return out, scales, residual
def ops_impl(weight: torch.Tensor,
x: torch.Tensor,
quant_dtype: torch.dtype,
residual: Optional[torch.Tensor],
scale_ub: Optional[torch.Tensor]) \
-> Tuple[torch.Tensor, torch.Tensor, Optional[torch.Tensor]]:
return ops_dynamic_per_token_quant(weight, x, quant_dtype, residual,
scale_ub)
@pytest.mark.parametrize("num_tokens, hidden_size", NUM_TOKENS_HIDDEN_SIZES)
@pytest.mark.parametrize("add_residual", ADD_RESIDUAL)
@pytest.mark.parametrize("scale_ub", SCALE_UBS)
@pytest.mark.parametrize("dtype", DTYPES)
@pytest.mark.parametrize("quant_dtype", QUANT_DTYPES)
@pytest.mark.parametrize("seed", SEEDS)
@pytest.mark.parametrize("device", CUDA_DEVICES)
@torch.inference_mode()
def test_rms_norm(
num_tokens: int,
hidden_size: int,
add_residual: bool,
scale_ub: bool,
dtype: torch.dtype,
quant_dtype: torch.dtype,
seed: int,
device: str,
) -> None:
torch.random.manual_seed(seed)
if torch.cuda.is_available():
torch.cuda.manual_seed(seed)
torch.set_default_device(device)
if scale_ub is not None and quant_dtype != torch.float8_e4m3fn:
# skip
return
layer = RMSNorm(hidden_size, EPS).to(dtype=dtype)
# Make weights
layer.weight.data.normal_(mean=1.0, std=0.1)
# Make inputs
scale = 1 / (hidden_size)
x = torch.randn(num_tokens, hidden_size, dtype=dtype) * scale
residual = torch.randn_like(x) * scale if add_residual else None
if scale_ub is not None:
rms_x, _ = ref_rms_norm(layer, x, residual)
scale_ub = torch.mean(rms_x).to(dtype=torch.float32, device='cuda')
ref_out, ref_scales, ref_residual = \
ref_impl(layer, x, quant_dtype, residual, scale_ub)
ops_out, ops_scales, ops_residual = \
ops_impl(layer.weight, x, quant_dtype, residual, scale_ub)
assert ref_out.dtype == quant_dtype
assert ops_out.dtype == quant_dtype
assert torch.allclose(ref_scales, ops_scales)
if quant_dtype == torch.int8:
# big atol to account for round-off errors.
assert torch.allclose(ref_out, ops_out, atol=1)
else:
assert torch.allclose(ref_out.to(dtype=torch.float32),
ops_out.to(dtype=torch.float32))
if add_residual:
assert torch.allclose(ref_residual, ops_residual)
output = torch.empty_like(x, dtype=quant_dtype)
scales = torch.empty((x.numel() // x.shape[-1], 1),
device=x.device,
dtype=torch.float32)
opcheck(torch.ops._C.rms_norm_dynamic_per_token_quant,
(output, x, layer.weight, scales, 1e-5, scale_ub, residual))