59 lines
2.3 KiB
Markdown
59 lines
2.3 KiB
Markdown
# Prometheus and Grafana
|
|
|
|
This is a simple example that shows you how to connect vLLM metric logging to the Prometheus/Grafana stack. For this example, we launch Prometheus and Grafana via Docker. You can checkout other methods through [Prometheus](https://prometheus.io/) and [Grafana](https://grafana.com/) websites.
|
|
|
|
Install:
|
|
|
|
- [`docker`](https://docs.docker.com/engine/install/)
|
|
- [`docker compose`](https://docs.docker.com/compose/install/linux/#install-using-the-repository)
|
|
|
|
## Launch
|
|
|
|
Prometheus metric logging is enabled by default in the OpenAI-compatible server. Launch via the entrypoint:
|
|
|
|
```bash
|
|
vllm serve mistralai/Mistral-7B-v0.1 \
|
|
--max-model-len 2048 \
|
|
--disable-log-requests
|
|
```
|
|
|
|
Launch Prometheus and Grafana servers with `docker compose`:
|
|
|
|
```bash
|
|
docker compose up
|
|
```
|
|
|
|
Submit some sample requests to the server:
|
|
|
|
```bash
|
|
wget https://huggingface.co/datasets/anon8231489123/ShareGPT_Vicuna_unfiltered/resolve/main/ShareGPT_V3_unfiltered_cleaned_split.json
|
|
|
|
python3 ../../../benchmarks/benchmark_serving.py \
|
|
--model mistralai/Mistral-7B-v0.1 \
|
|
--tokenizer mistralai/Mistral-7B-v0.1 \
|
|
--endpoint /v1/completions \
|
|
--dataset-name sharegpt \
|
|
--dataset-path ShareGPT_V3_unfiltered_cleaned_split.json \
|
|
--request-rate 3.0
|
|
```
|
|
|
|
Navigating to [`http://localhost:8000/metrics`](http://localhost:8000/metrics) will show the raw Prometheus metrics being exposed by vLLM.
|
|
|
|
## Grafana Dashboard
|
|
|
|
Navigate to [`http://localhost:3000`](http://localhost:3000). Log in with the default username (`admin`) and password (`admin`).
|
|
|
|
### Add Prometheus Data Source
|
|
|
|
Navigate to [`http://localhost:3000/connections/datasources/new`](http://localhost:3000/connections/datasources/new) and select Prometheus.
|
|
|
|
On Prometheus configuration page, we need to add the `Prometheus Server URL` in `Connection`. For this setup, Grafana and Prometheus are running in separate containers, but Docker creates DNS name for each containers. You can just use `http://prometheus:9090`.
|
|
|
|
Click `Save & Test`. You should get a green check saying "Successfully queried the Prometheus API.".
|
|
|
|
### Import Dashboard
|
|
|
|
Navigate to [`http://localhost:3000/dashboard/import`](http://localhost:3000/dashboard/import), upload `grafana.json`, and select the `prometheus` datasource. You should see a screen that looks like the following:
|
|
|
|

|