vllm/vllm/engine/ray_utils.py
2024-04-12 14:35:50 -07:00

150 lines
5.6 KiB
Python

import pickle
from typing import Callable, List, Optional, Tuple
from vllm.config import ParallelConfig
from vllm.logger import init_logger
from vllm.utils import get_ip, is_hip, set_cuda_visible_devices
from vllm.worker.worker import Worker
logger = init_logger(__name__)
try:
import ray
class RayWorkerVllm:
"""Ray wrapper for vllm.worker.Worker, allowing Worker to be
lazliy initialized after Ray sets CUDA_VISIBLE_DEVICES."""
def __init__(self, init_cached_hf_modules=False) -> None:
if init_cached_hf_modules:
from transformers.dynamic_module_utils import init_hf_modules
init_hf_modules()
self._worker: Optional[Worker] = None
# Since the compiled DAG runs a main execution
# in a different thread that calls cuda.set_device.
# The flag indicates is set_device is called on
# that thread.
self.compiled_dag_cuda_device_set = False
def init_worker(self, worker_init_fn: Callable[[], Worker]):
self._worker = worker_init_fn()
@property
def worker(self) -> Worker:
assert self._worker is not None
return self._worker
def __getattr__(self, name):
return getattr(self.worker, name)
def execute_method(self, method, *args, **kwargs):
try:
executor = getattr(self, method)
return executor(*args, **kwargs)
except Exception as e:
# exceptions in ray worker may cause deadlock
# see https://github.com/vllm-project/vllm/issues/3455
# print the error and inform the user to solve the error
msg = (f"Error executing method {method}. "
"This might cause deadlock in distributed execution.")
logger.exception(msg)
raise e
def get_node_ip(self) -> str:
return get_ip()
def get_node_and_gpu_ids(self) -> Tuple[str, List[int]]:
node_id = ray.get_runtime_context().get_node_id()
gpu_ids = ray.get_gpu_ids()
return node_id, gpu_ids
def set_cuda_visible_devices(self, device_ids) -> None:
set_cuda_visible_devices(device_ids)
def execute_model_compiled_dag_remote(self, ignored):
"""Used only when compiled DAG is enabled."""
import torch
if not self.compiled_dag_cuda_device_set:
torch.cuda.set_device(self.worker.device)
self.compiled_dag_cuda_device_set = True
output = self.worker.execute_model()
output = pickle.dumps(output)
return output
except ImportError as e:
logger.warning(f"Failed to import Ray with {e!r}. "
"For distributed inference, please install Ray with "
"`pip install ray`.")
ray = None # type: ignore
RayWorkerVllm = None # type: ignore
def initialize_ray_cluster(
parallel_config: ParallelConfig,
ray_address: Optional[str] = None,
):
"""Initialize the distributed cluster with Ray.
it will connect to the Ray cluster and create a placement group
for the workers, which includes the specification of the resources
for each distributed worker.
Args:
parallel_config: The configurations for parallel execution.
ray_address: The address of the Ray cluster. If None, uses
the default Ray cluster address.
"""
if ray is None:
raise ImportError(
"Ray is not installed. Please install Ray to use distributed "
"serving.")
# Connect to a ray cluster.
if is_hip():
ray.init(address=ray_address,
ignore_reinit_error=True,
num_gpus=parallel_config.world_size)
else:
ray.init(address=ray_address, ignore_reinit_error=True)
if parallel_config.placement_group:
# Placement group is already set.
return
# Create placement group for worker processes
current_placement_group = ray.util.get_current_placement_group()
if current_placement_group:
# We are in a placement group
bundles = current_placement_group.bundle_specs
# Verify that we can use the placement group.
gpu_bundles = 0
for bundle in bundles:
bundle_gpus = bundle.get("GPU", 0)
if bundle_gpus > 1:
raise ValueError(
"Placement group bundle cannot have more than 1 GPU.")
if bundle_gpus:
gpu_bundles += 1
if parallel_config.world_size > gpu_bundles:
raise ValueError(
"The number of required GPUs exceeds the total number of "
"available GPUs in the placement group.")
else:
num_gpus_in_cluster = ray.cluster_resources().get("GPU", 0)
if parallel_config.world_size > num_gpus_in_cluster:
raise ValueError(
"The number of required GPUs exceeds the total number of "
"available GPUs in the cluster.")
# Create a new placement group
placement_group_specs = ([{"GPU": 1}] * parallel_config.world_size)
current_placement_group = ray.util.placement_group(
placement_group_specs)
# Wait until PG is ready - this will block until all
# requested resources are available, and will timeout
# if they cannot be provisioned.
ray.get(current_placement_group.ready(), timeout=1800)
# Set the placement group in the parallel config
parallel_config.placement_group = current_placement_group