
- **Add SPDX license headers to python source files** - **Check for SPDX headers using pre-commit** commit 9d7ef44c3cfb72ca4c32e1c677d99259d10d4745 Author: Russell Bryant <rbryant@redhat.com> Date: Fri Jan 31 14:18:24 2025 -0500 Add SPDX license headers to python source files This commit adds SPDX license headers to python source files as recommended to the project by the Linux Foundation. These headers provide a concise way that is both human and machine readable for communicating license information for each source file. It helps avoid any ambiguity about the license of the code and can also be easily used by tools to help manage license compliance. The Linux Foundation runs license scans against the codebase to help ensure we are in compliance with the licenses of the code we use, including dependencies. Having these headers in place helps that tool do its job. More information can be found on the SPDX site: - https://spdx.dev/learn/handling-license-info/ Signed-off-by: Russell Bryant <rbryant@redhat.com> commit 5a1cf1cb3b80759131c73f6a9dddebccac039dea Author: Russell Bryant <rbryant@redhat.com> Date: Fri Jan 31 14:36:32 2025 -0500 Check for SPDX headers using pre-commit Signed-off-by: Russell Bryant <rbryant@redhat.com> --------- Signed-off-by: Russell Bryant <rbryant@redhat.com>
352 lines
12 KiB
Python
352 lines
12 KiB
Python
# SPDX-License-Identifier: Apache-2.0
|
|
|
|
import gc
|
|
import json
|
|
import os
|
|
import pathlib
|
|
import subprocess
|
|
from functools import partial
|
|
from unittest.mock import MagicMock, patch
|
|
|
|
import openai
|
|
import pytest
|
|
import torch
|
|
from huggingface_hub import snapshot_download
|
|
|
|
from vllm import SamplingParams
|
|
from vllm.engine.arg_utils import EngineArgs
|
|
# yapf conflicts with isort for this docstring
|
|
# yapf: disable
|
|
from vllm.model_executor.model_loader.tensorizer import (TensorizerConfig,
|
|
TensorSerializer,
|
|
is_vllm_tensorized,
|
|
load_with_tensorizer,
|
|
open_stream,
|
|
serialize_vllm_model,
|
|
tensorize_vllm_model)
|
|
# yapf: enable
|
|
from vllm.utils import PlaceholderModule, import_from_path
|
|
|
|
from ..utils import VLLM_PATH, RemoteOpenAIServer
|
|
from .conftest import retry_until_skip
|
|
|
|
try:
|
|
from tensorizer import EncryptionParams
|
|
except ImportError:
|
|
tensorizer = PlaceholderModule("tensorizer") # type: ignore[assignment]
|
|
EncryptionParams = tensorizer.placeholder_attr("EncryptionParams")
|
|
|
|
EXAMPLES_PATH = VLLM_PATH / "examples"
|
|
|
|
prompts = [
|
|
"Hello, my name is",
|
|
"The president of the United States is",
|
|
"The capital of France is",
|
|
"The future of AI is",
|
|
]
|
|
# Create a sampling params object.
|
|
sampling_params = SamplingParams(temperature=0.8, top_p=0.95, seed=0)
|
|
|
|
model_ref = "facebook/opt-125m"
|
|
tensorize_model_for_testing_script = os.path.join(
|
|
os.path.dirname(__file__), "tensorize_vllm_model_for_testing.py")
|
|
|
|
|
|
def is_curl_installed():
|
|
try:
|
|
subprocess.check_call(['curl', '--version'])
|
|
return True
|
|
except (subprocess.CalledProcessError, FileNotFoundError):
|
|
return False
|
|
|
|
|
|
def write_keyfile(keyfile_path: str):
|
|
encryption_params = EncryptionParams.random()
|
|
pathlib.Path(keyfile_path).parent.mkdir(parents=True, exist_ok=True)
|
|
with open(keyfile_path, 'wb') as f:
|
|
f.write(encryption_params.key)
|
|
|
|
|
|
@patch('vllm.model_executor.model_loader.tensorizer.TensorizerAgent')
|
|
def test_load_with_tensorizer(mock_agent, tensorizer_config):
|
|
mock_linear_method = MagicMock()
|
|
mock_agent_instance = mock_agent.return_value
|
|
mock_agent_instance.deserialize.return_value = MagicMock()
|
|
|
|
result = load_with_tensorizer(tensorizer_config,
|
|
quant_method=mock_linear_method)
|
|
|
|
mock_agent.assert_called_once_with(tensorizer_config,
|
|
quant_method=mock_linear_method)
|
|
mock_agent_instance.deserialize.assert_called_once()
|
|
assert result == mock_agent_instance.deserialize.return_value
|
|
|
|
|
|
@pytest.mark.skipif(not is_curl_installed(), reason="cURL is not installed")
|
|
def test_can_deserialize_s3(vllm_runner):
|
|
model_ref = "EleutherAI/pythia-1.4b"
|
|
tensorized_path = f"s3://tensorized/{model_ref}/fp16/model.tensors"
|
|
|
|
with vllm_runner(model_ref,
|
|
load_format="tensorizer",
|
|
model_loader_extra_config=TensorizerConfig(
|
|
tensorizer_uri=tensorized_path,
|
|
num_readers=1,
|
|
s3_endpoint="object.ord1.coreweave.com",
|
|
)) as loaded_hf_model:
|
|
deserialized_outputs = loaded_hf_model.generate(
|
|
prompts, sampling_params)
|
|
# noqa: E501
|
|
|
|
assert deserialized_outputs
|
|
|
|
|
|
@pytest.mark.skipif(not is_curl_installed(), reason="cURL is not installed")
|
|
def test_deserialized_encrypted_vllm_model_has_same_outputs(
|
|
vllm_runner, tmp_path):
|
|
with vllm_runner(model_ref) as vllm_model:
|
|
model_path = tmp_path / (model_ref + ".tensors")
|
|
key_path = tmp_path / (model_ref + ".key")
|
|
write_keyfile(key_path)
|
|
|
|
outputs = vllm_model.generate(prompts, sampling_params)
|
|
|
|
config_for_serializing = TensorizerConfig(tensorizer_uri=model_path,
|
|
encryption_keyfile=key_path)
|
|
|
|
vllm_model.apply_model(
|
|
partial(serialize_vllm_model,
|
|
tensorizer_config=config_for_serializing))
|
|
|
|
config_for_deserializing = TensorizerConfig(tensorizer_uri=model_path,
|
|
encryption_keyfile=key_path)
|
|
|
|
with vllm_runner(model_ref,
|
|
load_format="tensorizer",
|
|
model_loader_extra_config=config_for_deserializing
|
|
) as loaded_vllm_model: # noqa: E501
|
|
|
|
deserialized_outputs = loaded_vllm_model.generate(
|
|
prompts, sampling_params)
|
|
# noqa: E501
|
|
|
|
assert outputs == deserialized_outputs
|
|
|
|
|
|
def test_deserialized_hf_model_has_same_outputs(hf_runner, vllm_runner,
|
|
tmp_path):
|
|
with hf_runner(model_ref) as hf_model:
|
|
model_path = tmp_path / (model_ref + ".tensors")
|
|
max_tokens = 50
|
|
outputs = hf_model.generate_greedy(prompts, max_tokens=max_tokens)
|
|
with open_stream(model_path, "wb+") as stream:
|
|
serializer = TensorSerializer(stream)
|
|
serializer.write_module(hf_model.model)
|
|
|
|
with vllm_runner(model_ref,
|
|
load_format="tensorizer",
|
|
model_loader_extra_config=TensorizerConfig(
|
|
tensorizer_uri=model_path,
|
|
num_readers=1,
|
|
)) as loaded_hf_model:
|
|
deserialized_outputs = loaded_hf_model.generate_greedy(
|
|
prompts, max_tokens=max_tokens)
|
|
|
|
assert outputs == deserialized_outputs
|
|
|
|
|
|
def test_vllm_model_can_load_with_lora(vllm_runner, tmp_path):
|
|
multilora_inference = import_from_path(
|
|
"examples.offline_inference.multilora_inference",
|
|
EXAMPLES_PATH / "offline_inference/multilora_inference.py",
|
|
)
|
|
|
|
model_ref = "meta-llama/Llama-2-7b-hf"
|
|
lora_path = snapshot_download(repo_id="yard1/llama-2-7b-sql-lora-test")
|
|
test_prompts = multilora_inference.create_test_prompts(lora_path)
|
|
|
|
# Serialize model before deserializing and binding LoRA adapters
|
|
with vllm_runner(model_ref, ) as vllm_model:
|
|
model_path = tmp_path / (model_ref + ".tensors")
|
|
|
|
vllm_model.apply_model(
|
|
partial(
|
|
serialize_vllm_model,
|
|
tensorizer_config=TensorizerConfig(tensorizer_uri=model_path)))
|
|
|
|
with vllm_runner(
|
|
model_ref,
|
|
load_format="tensorizer",
|
|
model_loader_extra_config=TensorizerConfig(
|
|
tensorizer_uri=model_path,
|
|
num_readers=1,
|
|
),
|
|
enable_lora=True,
|
|
max_loras=1,
|
|
max_lora_rank=8,
|
|
max_cpu_loras=2,
|
|
max_num_seqs=50,
|
|
max_model_len=1000,
|
|
) as loaded_vllm_model:
|
|
multilora_inference.process_requests(
|
|
loaded_vllm_model.model.llm_engine, test_prompts)
|
|
|
|
assert loaded_vllm_model
|
|
|
|
|
|
def test_load_without_tensorizer_load_format(vllm_runner):
|
|
model = None
|
|
with pytest.raises(ValueError):
|
|
model = vllm_runner(
|
|
model_ref,
|
|
model_loader_extra_config=TensorizerConfig(tensorizer_uri="test"))
|
|
del model
|
|
gc.collect()
|
|
torch.cuda.empty_cache()
|
|
|
|
|
|
@pytest.mark.skipif(not is_curl_installed(), reason="cURL is not installed")
|
|
def test_openai_apiserver_with_tensorizer(vllm_runner, tmp_path):
|
|
## Serialize model
|
|
with vllm_runner(model_ref, ) as vllm_model:
|
|
model_path = tmp_path / (model_ref + ".tensors")
|
|
|
|
vllm_model.apply_model(
|
|
partial(
|
|
serialize_vllm_model,
|
|
tensorizer_config=TensorizerConfig(tensorizer_uri=model_path)))
|
|
|
|
model_loader_extra_config = {
|
|
"tensorizer_uri": str(model_path),
|
|
}
|
|
|
|
## Start OpenAI API server
|
|
openai_args = [
|
|
"--dtype",
|
|
"float16",
|
|
"--load-format",
|
|
"tensorizer",
|
|
"--model-loader-extra-config",
|
|
json.dumps(model_loader_extra_config),
|
|
]
|
|
|
|
with RemoteOpenAIServer(model_ref, openai_args) as server:
|
|
print("Server ready.")
|
|
|
|
client = server.get_client()
|
|
completion = client.completions.create(model=model_ref,
|
|
prompt="Hello, my name is",
|
|
max_tokens=5,
|
|
temperature=0.0)
|
|
|
|
assert completion.id is not None
|
|
assert len(completion.choices) == 1
|
|
assert len(completion.choices[0].text) >= 5
|
|
assert completion.choices[0].finish_reason == "length"
|
|
assert completion.usage == openai.types.CompletionUsage(
|
|
completion_tokens=5, prompt_tokens=6, total_tokens=11)
|
|
|
|
|
|
def test_raise_value_error_on_invalid_load_format(vllm_runner):
|
|
model = None
|
|
with pytest.raises(ValueError):
|
|
model = vllm_runner(
|
|
model_ref,
|
|
load_format="safetensors",
|
|
model_loader_extra_config=TensorizerConfig(tensorizer_uri="test"))
|
|
del model
|
|
gc.collect()
|
|
torch.cuda.empty_cache()
|
|
|
|
|
|
@pytest.mark.skipif(torch.cuda.device_count() < 2, reason="Requires 2 GPUs")
|
|
def test_tensorizer_with_tp_path_without_template(vllm_runner):
|
|
with pytest.raises(ValueError):
|
|
model_ref = "EleutherAI/pythia-1.4b"
|
|
tensorized_path = f"s3://tensorized/{model_ref}/fp16/model.tensors"
|
|
|
|
vllm_runner(
|
|
model_ref,
|
|
load_format="tensorizer",
|
|
model_loader_extra_config=TensorizerConfig(
|
|
tensorizer_uri=tensorized_path,
|
|
num_readers=1,
|
|
s3_endpoint="object.ord1.coreweave.com",
|
|
),
|
|
tensor_parallel_size=2,
|
|
disable_custom_all_reduce=True,
|
|
)
|
|
|
|
|
|
@pytest.mark.skipif(torch.cuda.device_count() < 2, reason="Requires 2 GPUs")
|
|
def test_deserialized_encrypted_vllm_model_with_tp_has_same_outputs(
|
|
vllm_runner, tmp_path):
|
|
model_ref = "EleutherAI/pythia-1.4b"
|
|
# record outputs from un-sharded un-tensorized model
|
|
with vllm_runner(
|
|
model_ref,
|
|
disable_custom_all_reduce=True,
|
|
enforce_eager=True,
|
|
) as base_model:
|
|
outputs = base_model.generate(prompts, sampling_params)
|
|
base_model.model.llm_engine.model_executor.shutdown()
|
|
|
|
# load model with two shards and serialize with encryption
|
|
model_path = str(tmp_path / (model_ref + "-%02d.tensors"))
|
|
key_path = tmp_path / (model_ref + ".key")
|
|
|
|
tensorizer_config = TensorizerConfig(
|
|
tensorizer_uri=model_path,
|
|
encryption_keyfile=key_path,
|
|
)
|
|
|
|
tensorize_vllm_model(
|
|
engine_args=EngineArgs(
|
|
model=model_ref,
|
|
tensor_parallel_size=2,
|
|
disable_custom_all_reduce=True,
|
|
enforce_eager=True,
|
|
),
|
|
tensorizer_config=tensorizer_config,
|
|
)
|
|
assert os.path.isfile(model_path % 0), "Serialization subprocess failed"
|
|
assert os.path.isfile(model_path % 1), "Serialization subprocess failed"
|
|
|
|
with vllm_runner(
|
|
model_ref,
|
|
tensor_parallel_size=2,
|
|
load_format="tensorizer",
|
|
disable_custom_all_reduce=True,
|
|
enforce_eager=True,
|
|
model_loader_extra_config=tensorizer_config) as loaded_vllm_model:
|
|
deserialized_outputs = loaded_vllm_model.generate(
|
|
prompts, sampling_params)
|
|
|
|
assert outputs == deserialized_outputs
|
|
|
|
|
|
@retry_until_skip(3)
|
|
def test_vllm_tensorized_model_has_same_outputs(vllm_runner, tmp_path):
|
|
gc.collect()
|
|
torch.cuda.empty_cache()
|
|
model_ref = "facebook/opt-125m"
|
|
model_path = tmp_path / (model_ref + ".tensors")
|
|
config = TensorizerConfig(tensorizer_uri=str(model_path))
|
|
|
|
with vllm_runner(model_ref) as vllm_model:
|
|
outputs = vllm_model.generate(prompts, sampling_params)
|
|
|
|
vllm_model.apply_model(
|
|
partial(serialize_vllm_model, tensorizer_config=config))
|
|
|
|
assert is_vllm_tensorized(config)
|
|
|
|
with vllm_runner(model_ref,
|
|
load_format="tensorizer",
|
|
model_loader_extra_config=config) as loaded_vllm_model:
|
|
deserialized_outputs = loaded_vllm_model.generate(
|
|
prompts, sampling_params)
|
|
# noqa: E501
|
|
|
|
assert outputs == deserialized_outputs
|