vllm/tests/models/test_registry.py
Russell Bryant e489ad7a21
[Misc] Add SPDX-License-Identifier headers to python source files (#12628)
- **Add SPDX license headers to python source files**
- **Check for SPDX headers using pre-commit**

commit 9d7ef44c3cfb72ca4c32e1c677d99259d10d4745
Author: Russell Bryant <rbryant@redhat.com>
Date:   Fri Jan 31 14:18:24 2025 -0500

    Add SPDX license headers to python source files
    
This commit adds SPDX license headers to python source files as
recommended to
the project by the Linux Foundation. These headers provide a concise way
that is
both human and machine readable for communicating license information
for each
source file. It helps avoid any ambiguity about the license of the code
and can
    also be easily used by tools to help manage license compliance.
    
The Linux Foundation runs license scans against the codebase to help
ensure
    we are in compliance with the licenses of the code we use, including
dependencies. Having these headers in place helps that tool do its job.
    
    More information can be found on the SPDX site:
    
    - https://spdx.dev/learn/handling-license-info/
    
    Signed-off-by: Russell Bryant <rbryant@redhat.com>

commit 5a1cf1cb3b80759131c73f6a9dddebccac039dea
Author: Russell Bryant <rbryant@redhat.com>
Date:   Fri Jan 31 14:36:32 2025 -0500

    Check for SPDX headers using pre-commit
    
    Signed-off-by: Russell Bryant <rbryant@redhat.com>

---------

Signed-off-by: Russell Bryant <rbryant@redhat.com>
2025-02-02 11:58:18 -08:00

100 lines
3.9 KiB
Python

# SPDX-License-Identifier: Apache-2.0
import warnings
import pytest
import torch.cuda
from vllm.model_executor.models import (is_pooling_model,
is_text_generation_model,
supports_multimodal)
from vllm.model_executor.models.adapters import (as_classification_model,
as_embedding_model,
as_reward_model)
from vllm.model_executor.models.registry import (_MULTIMODAL_MODELS,
_SPECULATIVE_DECODING_MODELS,
_TEXT_GENERATION_MODELS,
ModelRegistry)
from vllm.platforms import current_platform
from ..utils import fork_new_process_for_each_test
from .registry import HF_EXAMPLE_MODELS
@pytest.mark.parametrize("model_arch", ModelRegistry.get_supported_archs())
def test_registry_imports(model_arch):
model_info = HF_EXAMPLE_MODELS.get_hf_info(model_arch)
model_info.check_transformers_version(on_fail="skip")
# Ensure all model classes can be imported successfully
model_cls, _ = ModelRegistry.resolve_model_cls(model_arch)
if model_arch in _SPECULATIVE_DECODING_MODELS:
return # Ignore these models which do not have a unified format
if (model_arch in _TEXT_GENERATION_MODELS
or model_arch in _MULTIMODAL_MODELS):
assert is_text_generation_model(model_cls)
# All vLLM models should be convertible to a pooling model
assert is_pooling_model(as_classification_model(model_cls))
assert is_pooling_model(as_embedding_model(model_cls))
assert is_pooling_model(as_reward_model(model_cls))
if model_arch in _MULTIMODAL_MODELS:
assert supports_multimodal(model_cls)
@fork_new_process_for_each_test
@pytest.mark.parametrize("model_arch,is_mm,init_cuda,is_ce", [
("LlamaForCausalLM", False, False, False),
("MllamaForConditionalGeneration", True, False, False),
("LlavaForConditionalGeneration", True, True, False),
("BertForSequenceClassification", False, False, True),
("RobertaForSequenceClassification", False, False, True),
("XLMRobertaForSequenceClassification", False, False, True),
])
def test_registry_model_property(model_arch, is_mm, init_cuda, is_ce):
assert ModelRegistry.is_multimodal_model(model_arch) is is_mm
assert ModelRegistry.is_cross_encoder_model(model_arch) is is_ce
if init_cuda and current_platform.is_cuda_alike():
assert not torch.cuda.is_initialized()
ModelRegistry.resolve_model_cls(model_arch)
if not torch.cuda.is_initialized():
warnings.warn(
"This model no longer initializes CUDA on import. "
"Please test using a different one.",
stacklevel=2)
@fork_new_process_for_each_test
@pytest.mark.parametrize("model_arch,is_pp,init_cuda", [
("MLPSpeculatorPreTrainedModel", False, False),
("DeepseekV2ForCausalLM", True, False),
("Qwen2VLForConditionalGeneration", True, True),
])
def test_registry_is_pp(model_arch, is_pp, init_cuda):
assert ModelRegistry.is_pp_supported_model(model_arch) is is_pp
if init_cuda and current_platform.is_cuda_alike():
assert not torch.cuda.is_initialized()
ModelRegistry.resolve_model_cls(model_arch)
if not torch.cuda.is_initialized():
warnings.warn(
"This model no longer initializes CUDA on import. "
"Please test using a different one.",
stacklevel=2)
def test_hf_registry_coverage():
untested_archs = (ModelRegistry.get_supported_archs() -
HF_EXAMPLE_MODELS.get_supported_archs())
assert not untested_archs, (
"Please add the following architectures to "
f"`tests/models/registry.py`: {untested_archs}")