301 lines
9.6 KiB
Python
301 lines
9.6 KiB
Python
import asyncio
|
|
import json
|
|
import shutil
|
|
from contextlib import suppress
|
|
|
|
import openai # use the official client for correctness check
|
|
import pytest
|
|
import pytest_asyncio
|
|
# downloading lora to test lora requests
|
|
from huggingface_hub import snapshot_download
|
|
|
|
from ...utils import RemoteOpenAIServer
|
|
|
|
# any model with a chat template should work here
|
|
MODEL_NAME = "HuggingFaceH4/zephyr-7b-beta"
|
|
# technically this needs Mistral-7B-v0.1 as base, but we're not testing
|
|
# generation quality here
|
|
LORA_NAME = "typeof/zephyr-7b-beta-lora"
|
|
|
|
BADREQUEST_CASES = [
|
|
(
|
|
"test_rank",
|
|
{
|
|
"r": 1024
|
|
},
|
|
"is greater than max_lora_rank",
|
|
),
|
|
(
|
|
"test_bias",
|
|
{
|
|
"bias": "all"
|
|
},
|
|
"Adapter bias cannot be used without bias_enabled",
|
|
),
|
|
("test_dora", {
|
|
"use_dora": True
|
|
}, "does not yet support DoRA"),
|
|
(
|
|
"test_modules_to_save",
|
|
{
|
|
"modules_to_save": ["lm_head"]
|
|
},
|
|
"only supports modules_to_save being None",
|
|
),
|
|
]
|
|
|
|
|
|
@pytest.fixture(scope="module")
|
|
def zephyr_lora_files():
|
|
return snapshot_download(repo_id=LORA_NAME)
|
|
|
|
|
|
@pytest.fixture(scope="module")
|
|
def server_with_lora_modules_json(zephyr_lora_files):
|
|
# Define the json format LoRA module configurations
|
|
lora_module_1 = {
|
|
"name": "zephyr-lora",
|
|
"path": zephyr_lora_files,
|
|
"base_model_name": MODEL_NAME
|
|
}
|
|
|
|
lora_module_2 = {
|
|
"name": "zephyr-lora2",
|
|
"path": zephyr_lora_files,
|
|
"base_model_name": MODEL_NAME
|
|
}
|
|
|
|
args = [
|
|
# use half precision for speed and memory savings in CI environment
|
|
"--dtype",
|
|
"bfloat16",
|
|
"--max-model-len",
|
|
"8192",
|
|
"--enforce-eager",
|
|
# lora config below
|
|
"--enable-lora",
|
|
"--lora-modules",
|
|
json.dumps(lora_module_1),
|
|
json.dumps(lora_module_2),
|
|
"--max-lora-rank",
|
|
"64",
|
|
"--max-cpu-loras",
|
|
"2",
|
|
"--max-num-seqs",
|
|
"64",
|
|
]
|
|
|
|
# Enable the /v1/load_lora_adapter endpoint
|
|
envs = {"VLLM_ALLOW_RUNTIME_LORA_UPDATING": "True"}
|
|
|
|
with RemoteOpenAIServer(MODEL_NAME, args, env_dict=envs) as remote_server:
|
|
yield remote_server
|
|
|
|
|
|
@pytest_asyncio.fixture
|
|
async def client(server_with_lora_modules_json):
|
|
async with server_with_lora_modules_json.get_async_client(
|
|
) as async_client:
|
|
yield async_client
|
|
|
|
|
|
@pytest.mark.asyncio
|
|
async def test_static_lora_lineage(client: openai.AsyncOpenAI,
|
|
zephyr_lora_files):
|
|
models = await client.models.list()
|
|
models = models.data
|
|
served_model = models[0]
|
|
lora_models = models[1:]
|
|
assert served_model.id == MODEL_NAME
|
|
assert served_model.root == MODEL_NAME
|
|
assert served_model.parent is None
|
|
assert all(lora_model.root == zephyr_lora_files
|
|
for lora_model in lora_models)
|
|
assert all(lora_model.parent == MODEL_NAME for lora_model in lora_models)
|
|
assert lora_models[0].id == "zephyr-lora"
|
|
assert lora_models[1].id == "zephyr-lora2"
|
|
|
|
|
|
@pytest.mark.asyncio
|
|
async def test_dynamic_lora_lineage(client: openai.AsyncOpenAI,
|
|
zephyr_lora_files):
|
|
|
|
response = await client.post("load_lora_adapter",
|
|
cast_to=str,
|
|
body={
|
|
"lora_name": "zephyr-lora-3",
|
|
"lora_path": zephyr_lora_files
|
|
})
|
|
# Ensure adapter loads before querying /models
|
|
assert "success" in response
|
|
|
|
models = await client.models.list()
|
|
models = models.data
|
|
dynamic_lora_model = models[-1]
|
|
assert dynamic_lora_model.root == zephyr_lora_files
|
|
assert dynamic_lora_model.parent == MODEL_NAME
|
|
assert dynamic_lora_model.id == "zephyr-lora-3"
|
|
|
|
|
|
@pytest.mark.asyncio
|
|
async def test_dynamic_lora_not_found(client: openai.AsyncOpenAI):
|
|
with pytest.raises(openai.NotFoundError):
|
|
await client.post("load_lora_adapter",
|
|
cast_to=str,
|
|
body={
|
|
"lora_name": "notfound",
|
|
"lora_path": "/not/an/adapter"
|
|
})
|
|
|
|
|
|
@pytest.mark.asyncio
|
|
async def test_dynamic_lora_invalid_files(client: openai.AsyncOpenAI,
|
|
tmp_path):
|
|
invalid_files = tmp_path / "invalid_files"
|
|
invalid_files.mkdir()
|
|
(invalid_files / "adapter_config.json").write_text("this is not json")
|
|
|
|
with pytest.raises(openai.BadRequestError):
|
|
await client.post("load_lora_adapter",
|
|
cast_to=str,
|
|
body={
|
|
"lora_name": "invalid-json",
|
|
"lora_path": str(invalid_files)
|
|
})
|
|
|
|
|
|
@pytest.mark.asyncio
|
|
@pytest.mark.parametrize("test_name,config_change,expected_error",
|
|
BADREQUEST_CASES)
|
|
async def test_dynamic_lora_badrequests(client: openai.AsyncOpenAI, tmp_path,
|
|
zephyr_lora_files, test_name: str,
|
|
config_change: dict,
|
|
expected_error: str):
|
|
# Create test directory
|
|
test_dir = tmp_path / test_name
|
|
|
|
# Copy adapter files
|
|
shutil.copytree(zephyr_lora_files, test_dir)
|
|
|
|
# Load and modify configuration
|
|
config_path = test_dir / "adapter_config.json"
|
|
with open(config_path) as f:
|
|
adapter_config = json.load(f)
|
|
# Apply configuration changes
|
|
adapter_config.update(config_change)
|
|
|
|
# Save modified configuration
|
|
with open(config_path, "w") as f:
|
|
json.dump(adapter_config, f)
|
|
|
|
# Test loading the adapter
|
|
with pytest.raises(openai.BadRequestError, match=expected_error):
|
|
await client.post("load_lora_adapter",
|
|
cast_to=str,
|
|
body={
|
|
"lora_name": test_name,
|
|
"lora_path": str(test_dir)
|
|
})
|
|
|
|
|
|
@pytest.mark.asyncio
|
|
async def test_multiple_lora_adapters(client: openai.AsyncOpenAI, tmp_path,
|
|
zephyr_lora_files):
|
|
"""Validate that many loras can be dynamically registered and inferenced
|
|
with concurrently"""
|
|
|
|
# This test file configures the server with --max-cpu-loras=2 and this test
|
|
# will concurrently load 10 adapters, so it should flex the LRU cache
|
|
async def load_and_run_adapter(adapter_name: str):
|
|
await client.post("load_lora_adapter",
|
|
cast_to=str,
|
|
body={
|
|
"lora_name": adapter_name,
|
|
"lora_path": str(zephyr_lora_files)
|
|
})
|
|
for _ in range(3):
|
|
await client.completions.create(
|
|
model=adapter_name,
|
|
prompt=["Hello there", "Foo bar bazz buzz"],
|
|
max_tokens=5,
|
|
)
|
|
|
|
lora_tasks = []
|
|
for i in range(10):
|
|
lora_tasks.append(
|
|
asyncio.create_task(load_and_run_adapter(f"adapter_{i}")))
|
|
|
|
results, _ = await asyncio.wait(lora_tasks)
|
|
|
|
for r in results:
|
|
assert not isinstance(r, Exception), f"Got exception {r}"
|
|
|
|
|
|
@pytest.mark.asyncio
|
|
async def test_loading_invalid_adapters_does_not_break_others(
|
|
client: openai.AsyncOpenAI, tmp_path, zephyr_lora_files):
|
|
|
|
invalid_files = tmp_path / "invalid_files"
|
|
invalid_files.mkdir()
|
|
(invalid_files / "adapter_config.json").write_text("this is not json")
|
|
|
|
stop_good_requests_event = asyncio.Event()
|
|
|
|
async def run_good_requests(client):
|
|
# Run chat completions requests until event set
|
|
|
|
results = []
|
|
|
|
while not stop_good_requests_event.is_set():
|
|
try:
|
|
batch = await client.completions.create(
|
|
model="zephyr-lora",
|
|
prompt=["Hello there", "Foo bar bazz buzz"],
|
|
max_tokens=5,
|
|
)
|
|
results.append(batch)
|
|
except Exception as e:
|
|
results.append(e)
|
|
|
|
return results
|
|
|
|
# Create task to run good requests
|
|
good_task = asyncio.create_task(run_good_requests(client))
|
|
|
|
# Run a bunch of bad adapter loads
|
|
for _ in range(25):
|
|
with suppress(openai.NotFoundError):
|
|
await client.post("load_lora_adapter",
|
|
cast_to=str,
|
|
body={
|
|
"lora_name": "notfound",
|
|
"lora_path": "/not/an/adapter"
|
|
})
|
|
for _ in range(25):
|
|
with suppress(openai.BadRequestError):
|
|
await client.post("load_lora_adapter",
|
|
cast_to=str,
|
|
body={
|
|
"lora_name": "invalid",
|
|
"lora_path": str(invalid_files)
|
|
})
|
|
|
|
# Ensure all the running requests with lora adapters succeeded
|
|
stop_good_requests_event.set()
|
|
results = await good_task
|
|
for r in results:
|
|
assert not isinstance(r, Exception), f"Got exception {r}"
|
|
|
|
# Ensure we can load another adapter and run it
|
|
await client.post("load_lora_adapter",
|
|
cast_to=str,
|
|
body={
|
|
"lora_name": "valid",
|
|
"lora_path": zephyr_lora_files
|
|
})
|
|
await client.completions.create(
|
|
model="valid",
|
|
prompt=["Hello there", "Foo bar bazz buzz"],
|
|
max_tokens=5,
|
|
)
|