vllm/docs/source/getting_started/installation.rst
2023-11-18 23:48:58 -08:00

65 lines
1.7 KiB
ReStructuredText

.. _installation:
Installation
============
vLLM is a Python library that also contains pre-compiled C++ and CUDA (12.1) binaries.
Requirements
------------
* OS: Linux
* Python: 3.8 -- 3.11
* GPU: compute capability 7.0 or higher (e.g., V100, T4, RTX20xx, A100, L4, H100, etc.)
Install with pip
----------------
You can install vLLM using pip:
.. code-block:: console
$ # (Optional) Create a new conda environment.
$ conda create -n myenv python=3.8 -y
$ conda activate myenv
$ # Install vLLM with CUDA 12.1.
$ pip install vllm
.. note::
As of now, vLLM's binaries are compiled on CUDA 12.1 by default.
However, you can install vLLM with CUDA 11.8 by running:
.. code-block:: console
$ # Install vLLM with CUDA 11.8.
$ # Replace `cp310` with your Python version (e.g., `cp38`, `cp39`, `cp311`).
$ pip install https://github.com/vllm-project/vllm/releases/download/v0.2.2/vllm-0.2.2+cu118-cp310-cp310-manylinux1_x86_64.whl
$ # Re-install PyTorch with CUDA 11.8.
$ pip uninstall torch -y
$ pip install torch --upgrade --index-url https://download.pytorch.org/whl/cu118
.. _build_from_source:
Build from source
-----------------
You can also build and install vLLM from source:
.. code-block:: console
$ git clone https://github.com/vllm-project/vllm.git
$ cd vllm
$ pip install -e . # This may take 5-10 minutes.
.. tip::
If you have trouble building vLLM, we recommend using the NVIDIA PyTorch Docker image.
.. code-block:: console
$ # Use `--ipc=host` to make sure the shared memory is large enough.
$ docker run --gpus all -it --rm --ipc=host nvcr.io/nvidia/pytorch:23.10-py3