vllm/tests/spec_decode/test_ngram_worker.py

208 lines
6.5 KiB
Python

import torch
from vllm.sequence import ExecuteModelRequest
from vllm.spec_decode.ngram_worker import NGramWorker
from vllm.spec_decode.top1_proposer import Top1Proposer
from .utils import create_seq_group_metadata_from_prompts, create_worker
def test_ngram_algo_correctness_for_single_no_match():
"""Verify our ngram algo find the right candidate in the prompt
For the scenario cannot find any candidate in one single batch
"""
block_size = 32
num_gpu_blocks = 2048 // block_size
seed = 100
model_name = 'JackFram/llama-68m'
vocab_size = 32_000
device = 'cuda:0'
ngram_worker = create_worker(
NGramWorker,
model_name,
block_size,
num_gpu_blocks,
seed,
)
proposer = Top1Proposer(
worker=ngram_worker,
device=device,
vocab_size=vocab_size,
max_proposal_len=20,
)
# set ngram window [1, 3], which is window=1/2/3
ngram_worker.set_ngram_window_size(1, 3)
prompts = [
# shall find no candidate
[1, 2, 3, 4, 5, 6, 7],
]
proposal_len = 5
final_prompt_lens = [len(prompt) + proposal_len for prompt in prompts]
seq_group_metadata_list = create_seq_group_metadata_from_prompts(
prompts,
num_gpu_blocks,
block_size,
final_prompt_lens=final_prompt_lens)
proposals = proposer.get_proposals(execute_model_req=ExecuteModelRequest(
seq_group_metadata_list=seq_group_metadata_list,
num_lookahead_slots=proposal_len), )
assert torch.is_tensor(proposals.proposal_token_ids)
assert torch.is_tensor(proposals.proposal_probs)
assert proposals.proposal_token_ids.shape == torch.Size([1, proposal_len])
assert proposals.proposal_probs.shape[:-1] == torch.Size([1, proposal_len])
assert proposals.proposal_lens.shape == torch.Size([1])
assert proposals.proposal_lens.tolist() == [0]
def test_ngram_algo_correctness_for_batches_not_match_all():
"""Verify our ngram algo find the right candidate in the prompt
For the scenario find some candidate not full in batchs
"""
block_size = 32
num_gpu_blocks = 2048 // block_size
seed = 100
model_name = 'JackFram/llama-68m'
vocab_size = 32_000
device = 'cuda:0'
ngram_worker = create_worker(
NGramWorker,
model_name,
block_size,
num_gpu_blocks,
seed,
)
proposer = Top1Proposer(
worker=ngram_worker,
device=device,
vocab_size=vocab_size,
max_proposal_len=20,
)
# set ngram window [1, 3], which is window=1/2/3
ngram_worker.set_ngram_window_size(1, 3)
prompts = [
# shall find no candidate
[1, 2, 3, 4, 5, 6, 7],
# shall find candidate 12,13,14,15,16
[11, 12, 13, 14, 15, 16, 11],
# shall find candidate 23,24,25,26,21
[21, 21, 22, 23, 24, 25, 26, 21, 22],
# shall find candidate 34,35,36,37,38
[31, 32, 31, 32, 33, 34, 35, 36, 37, 38, 31, 32, 33],
# shall find no candidate as exceed max_proposal_len
[
31, 32, 31, 32, 31, 32, 31, 32, 31, 32, 31, 32, 33, 34, 35, 36, 37,
38, 31, 32, 33
],
]
proposal_len = 5
final_prompt_lens = [len(prompt) + proposal_len for prompt in prompts]
seq_group_metadata_list = create_seq_group_metadata_from_prompts(
prompts,
num_gpu_blocks,
block_size,
final_prompt_lens=final_prompt_lens)
proposals = proposer.get_proposals(execute_model_req=ExecuteModelRequest(
seq_group_metadata_list=seq_group_metadata_list,
num_lookahead_slots=proposal_len), )
assert torch.is_tensor(proposals.proposal_token_ids)
assert torch.is_tensor(proposals.proposal_probs)
assert proposals.proposal_token_ids.shape == torch.Size([5, proposal_len])
assert proposals.proposal_probs.shape[:-1] == torch.Size([5, proposal_len])
assert proposals.proposal_lens.shape == torch.Size([5])
# the first sequence has no match so proposal_len should be overwritten to 0
assert proposals.proposal_lens.tolist(
) == [0] + [proposal_len for _ in range(3)] + [0]
for i in range(proposal_len):
assert proposals.proposal_token_ids[0][i] == -1
assert proposals.proposal_token_ids[1][i] == prompts[1][i + 1]
assert proposals.proposal_token_ids[2][i] == prompts[2][i + 3]
assert proposals.proposal_token_ids[3][i] == prompts[3][i + 5]
assert proposals.proposal_token_ids[4][i] == -1
def test_ngram_algo_correctness_for_batches_match_all():
"""Verify our ngram algo find the right candidate in the prompt
For the scenario find candidate in all batchs
"""
block_size = 32
num_gpu_blocks = 2048 // block_size
seed = 100
model_name = 'JackFram/llama-68m'
vocab_size = 32_000
device = 'cuda:0'
ngram_worker = create_worker(
NGramWorker,
model_name,
block_size,
num_gpu_blocks,
seed,
)
proposer = Top1Proposer(
worker=ngram_worker,
device=device,
vocab_size=vocab_size,
max_proposal_len=20,
)
# set ngram window [0, 3], which is window=1/2/3
ngram_worker.set_ngram_window_size(1, 3)
prompts = [
# shall find candidate 12,13,14,15,16
[11, 12, 13, 14, 15, 16, 11],
# shall find candidate 23,24,25,26,21
[21, 21, 22, 23, 24, 25, 26, 21, 22],
# shall find candidate 34,35,36,37,38
[31, 32, 31, 32, 33, 34, 35, 36, 37, 38, 31, 32, 33],
]
proposal_len = 5
final_prompt_lens = [len(prompt) + proposal_len for prompt in prompts]
seq_group_metadata_list = create_seq_group_metadata_from_prompts(
prompts,
num_gpu_blocks,
block_size,
final_prompt_lens=final_prompt_lens)
proposals = proposer.get_proposals(execute_model_req=ExecuteModelRequest(
seq_group_metadata_list=seq_group_metadata_list,
num_lookahead_slots=proposal_len), )
assert torch.is_tensor(proposals.proposal_token_ids)
assert torch.is_tensor(proposals.proposal_probs)
assert proposals.proposal_token_ids.shape == torch.Size([3, proposal_len])
assert proposals.proposal_probs.shape[:-1] == torch.Size([3, proposal_len])
assert proposals.proposal_lens.shape == torch.Size([3])
assert proposals.proposal_lens.tolist() == [proposal_len for _ in range(3)]
for i in range(proposal_len):
assert proposals.proposal_token_ids[0][i] == prompts[0][i + 1]
assert proposals.proposal_token_ids[1][i] == prompts[1][i + 3]
assert proposals.proposal_token_ids[2][i] == prompts[2][i + 5]