vllm/tests/v1/core/test_scheduler.py
afeldman-nm 0630d4537a
[V1] Logprobs and prompt logprobs support (#9880)
This PR is adding support for sample logprobs & prompt logprobs to vLLM v1.

New behavior:

- During model execution, model runner computes sample logprobs (if user-provided logprobs setting is not None) and prompt logprobs (if user-provided prompt_logprobs setting is not None). For both sample and prompt logprobs, the engine core returns 3 vectors: token ids, token logprob values, token ranks. Ranks reflect tokens' 1-indexed positions in the vocabulary vector after sorting the vocabulary by log probability in descending order.
- In scheduler.update_from_output(), sample and prompt logprobs are incorporated into the EngineCoreOutput data structure which is transferred to the engine client. If multiprocessing is enabled, then sample and prompt logprobs will be (de)serialized when the EngineCoreOutput data structure is (de)serialized.
- During output processing, the LogprobsProcessor transforms the triplet of token ids, token logprobs values, and token ranks into the OpenAI-compatible List[Dict[token id,Logprob]] format (for sample and prompt logprobs respectively.)
- Each Logprob instance (whether sample- or prompt-) consists of a token's log-probability, rank, and detokenized string representation. Note that logprob detokenization is handled by the LogprobsProcessor not the detokenizer.

Signed-off-by: Andrew Feldman <afeldman@neuralmagic.com>
Signed-off-by: Nick Hill <nhill@redhat.com>
Signed-off-by: rshaw@neuralmagic.com <rshaw@neuralmagic.com>


Co-authored-by: rshaw@neuralmagic.com <rshaw@neuralmagic.com>
Co-authored-by: Nick Hill <nhill@redhat.com>
2025-02-07 07:26:20 -08:00

215 lines
7.4 KiB
Python

# SPDX-License-Identifier: Apache-2.0
from typing import List, Optional
from vllm.config import CacheConfig, ModelConfig, SchedulerConfig
from vllm.multimodal.inputs import MultiModalKwargs, PlaceholderRange
from vllm.sampling_params import SamplingParams
from vllm.v1.core.scheduler import Scheduler
from vllm.v1.outputs import ModelRunnerOutput
from vllm.v1.request import Request, RequestStatus
def create_scheduler(
model: str = "facebook/opt-125m",
max_num_seqs: int = 16,
max_num_batched_tokens: int = 8192,
) -> Scheduler:
scheduler_config = SchedulerConfig(
max_num_seqs=max_num_seqs,
max_num_batched_tokens=max_num_batched_tokens,
max_model_len=max_num_batched_tokens,
)
model_config = ModelConfig(
model=model,
task="auto",
tokenizer=model,
tokenizer_mode="auto",
trust_remote_code=True,
dtype="float16",
seed=42,
)
cache_config = CacheConfig(
block_size=16,
gpu_memory_utilization=0.9,
swap_space=0,
cache_dtype="auto",
)
cache_config.num_gpu_blocks = 10000
return Scheduler(scheduler_config,
model_config,
cache_config,
lora_config=None)
def create_requests(
num_requests: int,
num_tokens: int = 10,
mm_positions: Optional[List[PlaceholderRange]] = None,
):
sampling_params = SamplingParams()
requests = []
for i in range(num_requests):
if mm_positions is not None:
mm_position = mm_positions[i]
mm_inputs = [MultiModalKwargs({})] * len(mm_position)
else:
mm_position = None
mm_inputs = None
request = Request(
request_id=f"{i}",
prompt=None,
prompt_token_ids=[i] * num_tokens,
sampling_params=sampling_params,
multi_modal_inputs=mm_inputs,
multi_modal_placeholders=mm_position,
multi_modal_hashes=None,
eos_token_id=None,
arrival_time=0,
)
requests.append(request)
return requests
def test_add_requests():
scheduler = create_scheduler()
requests = create_requests(num_requests=10)
for i, request in enumerate(requests):
scheduler.add_request(request)
assert request.request_id in scheduler.requests
assert len(scheduler.waiting) == i + 1
def test_finish_request():
scheduler = create_scheduler()
requests = create_requests(num_requests=10)
for request in requests:
scheduler.add_request(request)
for i, request in enumerate(requests):
scheduler.finish_requests(request.request_id,
RequestStatus.FINISHED_ABORTED)
assert request.request_id not in scheduler.requests
assert len(scheduler.waiting) == 9 - i
def test_get_num_unfinished_requests():
scheduler = create_scheduler()
requests = create_requests(num_requests=10)
for request in requests:
scheduler.add_request(request)
for i, request in enumerate(requests):
scheduler.finish_requests(request.request_id,
RequestStatus.FINISHED_STOPPED)
assert scheduler.get_num_unfinished_requests() == len(requests) - i - 1
def test_schedule():
scheduler = create_scheduler()
requests = create_requests(num_requests=10)
for request in requests:
scheduler.add_request(request)
# Test initial scheduling
output = scheduler.schedule()
assert len(output.scheduled_new_reqs) == len(requests)
assert len(output.scheduled_cached_reqs) == 0
assert len(output.finished_req_ids) == 0
# Verify all requests are scheduled.
for req_id, num_tokens in output.num_scheduled_tokens.items():
assert num_tokens == len(requests[int(req_id)].prompt_token_ids)
# Verify requests moved from waiting to running
assert len(scheduler.waiting) == 0
assert len(scheduler.running) == len(requests)
for i, request in enumerate(requests):
assert scheduler.running[i] == request
def test_schedule_multimodal_requests():
scheduler = create_scheduler(model="llava-hf/llava-1.5-7b-hf")
mm_positions = [[PlaceholderRange(offset=i, length=100)]
for i in range(10)]
requests = create_requests(
num_requests=10,
num_tokens=200,
mm_positions=mm_positions,
)
for request in requests:
scheduler.add_request(request)
output = scheduler.schedule()
assert len(output.scheduled_new_reqs) == len(requests)
assert len(output.scheduled_cached_reqs) == 0
assert len(output.finished_req_ids) == 0
for req_id, num_tokens in output.num_scheduled_tokens.items():
assert num_tokens == len(requests[int(req_id)].prompt_token_ids)
assert len(output.scheduled_encoder_inputs) == 10
for req_id, encoder_input in output.scheduled_encoder_inputs.items():
assert len(encoder_input) == 1
def test_schedule_partial_requests():
"""Test scheduling behavior with partial requests.
This test verifies that:
1. The scheduler can handle multiple partial requests in a single step when
constrained by encoder budget.
2. A request in RUNNING state may be unscheduled in subsequent steps if
there is insufficient encoder budget.
"""
scheduler = create_scheduler(
model="llava-hf/llava-1.5-7b-hf",
max_num_batched_tokens=1024,
)
mm_positions = [[PlaceholderRange(offset=100, length=600)]
for _ in range(3)]
requests = create_requests(
num_requests=3,
num_tokens=800,
mm_positions=mm_positions,
)
for request in requests:
scheduler.add_request(request)
output = scheduler.schedule()
assert len(output.scheduled_new_reqs) == 3
assert len(output.scheduled_cached_reqs) == 0
assert len(output.finished_req_ids) == 0
assert scheduler.max_num_encoder_input_tokens == 1024
# The first request is scheduled fully.
assert output.num_scheduled_tokens[requests[0].request_id] == 800
# The second request is scheduled partially.
# The <img> tokens are not scheduled because of the encoder budget.
assert output.num_scheduled_tokens[requests[1].request_id] == 100
# The third request is also scheduled partially.
# The <img> tokens are not scheduled because of the encoder budget.
assert output.num_scheduled_tokens[requests[2].request_id] == 100
req_to_index = {
request.request_id: i
for i, request in enumerate(requests)
}
model_runner_output = ModelRunnerOutput(
req_ids=[request.request_id for request in requests],
req_id_to_index=req_to_index,
sampled_token_ids=[0] * len(requests),
logprobs=None,
prompt_logprobs_dict={},
)
scheduler.update_from_output(output, model_runner_output)
# Schedule the next step.
# Only the first and second requests are scheduled.
# The third request is in the RUNNING state but not scheduled in this step
# because of the encoder budget.
output = scheduler.schedule()
assert len(scheduler.running) == 3
assert len(output.scheduled_new_reqs) == 0
assert len(output.scheduled_cached_reqs) == 2
assert len(output.finished_req_ids) == 0
assert output.num_scheduled_tokens[requests[0].request_id] == 1
assert output.num_scheduled_tokens[requests[1].request_id] == 700
assert requests[2].request_id not in output.num_scheduled_tokens