219 lines
6.4 KiB
Bash
219 lines
6.4 KiB
Bash
#!/bin/bash
|
|
|
|
set -o pipefail
|
|
|
|
check_gpus() {
|
|
# check the number of GPUs and GPU type.
|
|
declare -g gpu_count=$(nvidia-smi --list-gpus | wc -l)
|
|
if [[ $gpu_count -gt 0 ]]; then
|
|
echo "GPU found."
|
|
else
|
|
echo "Need at least 1 GPU to run benchmarking."
|
|
exit 1
|
|
fi
|
|
declare -g gpu_type=$(echo $(nvidia-smi --query-gpu=name --format=csv,noheader) | awk '{print $2}')
|
|
echo "GPU type is $gpu_type"
|
|
}
|
|
|
|
kill_gpu_processes() {
|
|
pkill lmdeploy || true
|
|
# waiting for GPU processes to be fully killed
|
|
sleep 10
|
|
# Print the GPU memory usage
|
|
# so that we know if all GPU processes are killed.
|
|
gpu_memory_usage=$(nvidia-smi --query-gpu=memory.used --format=csv,noheader,nounits -i 0)
|
|
# The memory usage should be 0 MB.
|
|
echo "GPU 0 Memory Usage: $gpu_memory_usage MB"
|
|
}
|
|
|
|
json2args() {
|
|
# transforms the JSON string to command line args, and '_' is replaced to '-'
|
|
# example:
|
|
# input: { "model": "meta-llama/Llama-2-7b-chat-hf", "tensor_parallel_size": 1 }
|
|
# output: --model meta-llama/Llama-2-7b-chat-hf --tensor-parallel-size 1
|
|
local json_string=$1
|
|
local args=$(
|
|
echo "$json_string" | jq -r '
|
|
to_entries |
|
|
map("--" + (.key | gsub("_"; "-")) + " " + (.value | tostring)) |
|
|
join(" ")
|
|
'
|
|
)
|
|
echo "$args"
|
|
}
|
|
|
|
wait_for_server() {
|
|
# wait for vllm server to start
|
|
# return 1 if vllm server crashes
|
|
timeout 1200 bash -c '
|
|
until curl -s localhost:8000/v1/completions > /dev/null; do
|
|
sleep 1
|
|
done' && return 0 || return 1
|
|
}
|
|
|
|
run_serving_tests() {
|
|
# run serving tests using `benchmark_serving.py`
|
|
# $1: a json file specifying serving test cases
|
|
|
|
local serving_test_file
|
|
serving_test_file=$1
|
|
|
|
# Iterate over serving tests
|
|
jq -c '.[]' "$serving_test_file" | while read -r params; do
|
|
# get the test name, and append the GPU type back to it.
|
|
test_name=$(echo "$params" | jq -r '.test_name')
|
|
|
|
# if TEST_SELECTOR is set, only run the test cases that match the selector
|
|
if [[ -n "$TEST_SELECTOR" ]] && [[ ! "$test_name" =~ $TEST_SELECTOR ]]; then
|
|
echo "Skip test case $test_name."
|
|
continue
|
|
fi
|
|
|
|
# append lmdeploy to the test name
|
|
test_name=lmdeploy_$test_name
|
|
|
|
# get common parameters
|
|
common_params=$(echo "$params" | jq -r '.common_parameters')
|
|
model=$(echo "$common_params" | jq -r '.model')
|
|
tp=$(echo "$common_params" | jq -r '.tp')
|
|
dataset_name=$(echo "$common_params" | jq -r '.dataset_name')
|
|
dataset_path=$(echo "$common_params" | jq -r '.dataset_path')
|
|
port=$(echo "$common_params" | jq -r '.port')
|
|
num_prompts=$(echo "$common_params" | jq -r '.num_prompts')
|
|
|
|
|
|
|
|
# get client and server arguments
|
|
server_params=$(echo "$params" | jq -r '.lmdeploy_server_parameters')
|
|
client_params=$(echo "$params" | jq -r '.lmdeploy_client_parameters')
|
|
server_args=$(json2args "$server_params")
|
|
client_args=$(json2args "$client_params")
|
|
qps_list=$(echo "$params" | jq -r '.qps_list')
|
|
qps_list=$(echo "$qps_list" | jq -r '.[] | @sh')
|
|
echo "Running over qps list $qps_list"
|
|
|
|
# check if there is enough GPU to run the test
|
|
if [[ $gpu_count -lt $tp ]]; then
|
|
echo "Required tensor-parallel-size $tp but only $gpu_count GPU found. Skip testcase $test_name."
|
|
continue
|
|
fi
|
|
|
|
# prepare tokenizer
|
|
rm -rf /tokenizer_cache
|
|
mkdir /tokenizer_cache
|
|
python ../.buildkite/nightly-benchmarks/scripts/download-tokenizer.py \
|
|
--model "$model" \
|
|
--cachedir /tokenizer_cache
|
|
|
|
server_command="lmdeploy serve api_server $model \
|
|
--tp $tp \
|
|
--server-port $port \
|
|
$server_args"
|
|
|
|
# run the server
|
|
echo "Running test case $test_name"
|
|
echo "Server command: $server_command"
|
|
bash -c "$server_command" &
|
|
|
|
# wait until the server is alive
|
|
wait_for_server
|
|
if [ $? -eq 0 ]; then
|
|
echo ""
|
|
echo "lmdeploy server is up and running."
|
|
else
|
|
echo ""
|
|
echo "lmdeploy failed to start within the timeout period."
|
|
break
|
|
fi
|
|
|
|
# get model name
|
|
model_name=$(python ../.buildkite/nightly-benchmarks/scripts/get-lmdeploy-modelname.py)
|
|
|
|
# iterate over different QPS
|
|
for qps in $qps_list; do
|
|
# remove the surrounding single quote from qps
|
|
if [[ "$qps" == *"inf"* ]]; then
|
|
echo "qps was $qps"
|
|
qps="inf"
|
|
echo "now qps is $qps"
|
|
fi
|
|
|
|
new_test_name=$test_name"_qps_"$qps
|
|
|
|
client_command="python3 benchmark_serving.py \
|
|
--backend lmdeploy \
|
|
--tokenizer /tokenizer_cache \
|
|
--dataset-name $dataset_name \
|
|
--dataset-path $dataset_path \
|
|
--num-prompts $num_prompts \
|
|
--port $port \
|
|
--save-result \
|
|
--result-dir $RESULTS_FOLDER \
|
|
--result-filename ${new_test_name}.json \
|
|
--request-rate $qps \
|
|
--model \"$model_name\" \
|
|
$client_args"
|
|
|
|
echo "Running test case $test_name with qps $qps"
|
|
echo "Client command: $client_command"
|
|
|
|
eval "$client_command"
|
|
|
|
# record the benchmarking commands
|
|
jq_output=$(jq -n \
|
|
--arg server "$server_command" \
|
|
--arg client "$client_command" \
|
|
--arg gpu "$gpu_type" \
|
|
--arg engine "lmdeploy" \
|
|
'{
|
|
server_command: $server,
|
|
client_command: $client,
|
|
gpu_type: $gpu,
|
|
engine: $engine
|
|
}')
|
|
echo "$jq_output" >"$RESULTS_FOLDER/${new_test_name}.commands"
|
|
|
|
done
|
|
|
|
# clean up
|
|
kill_gpu_processes
|
|
rm -rf /root/.cache/huggingface/*
|
|
done
|
|
}
|
|
|
|
|
|
upload_to_buildkite() {
|
|
# upload the benchmarking results to buildkite
|
|
|
|
# if the agent binary is not found, skip uploading the results, exit 0
|
|
if [ ! -f /workspace/buildkite-agent ]; then
|
|
echo "buildkite-agent binary not found. Skip uploading the results."
|
|
return 0
|
|
fi
|
|
# /workspace/buildkite-agent annotate --style "success" --context "benchmark-results" --append < $RESULTS_FOLDER/${CURRENT_LLM_SERVING_ENGINE}_nightly_results.md
|
|
/workspace/buildkite-agent artifact upload "$RESULTS_FOLDER/*"
|
|
}
|
|
|
|
|
|
main() {
|
|
|
|
check_gpus
|
|
# enter vllm directory
|
|
cd $VLLM_SOURCE_CODE_LOC/benchmarks
|
|
|
|
declare -g RESULTS_FOLDER=results/
|
|
mkdir -p $RESULTS_FOLDER
|
|
BENCHMARK_ROOT=../.buildkite/nightly-benchmarks/
|
|
|
|
python -m pip install transformers==4.41.2
|
|
|
|
export CURRENT_LLM_SERVING_ENGINE=lmdeploy
|
|
run_serving_tests $BENCHMARK_ROOT/tests/nightly-tests.json
|
|
python -m pip install tabulate pandas
|
|
python $BENCHMARK_ROOT/scripts/summary-nightly-results.py
|
|
upload_to_buildkite
|
|
|
|
}
|
|
|
|
main "$@"
|