111 lines
3.1 KiB
Python
111 lines
3.1 KiB
Python
"""
|
|
Test the piecewise compilation with a simple model so that we
|
|
can exactly calculate the expected output and side effects.
|
|
"""
|
|
|
|
import torch
|
|
from torch import nn
|
|
from torch.library import Library
|
|
|
|
from vllm.compilation.compile_context import set_compile_context
|
|
from vllm.compilation.counter import compilation_counter
|
|
from vllm.compilation.decorators import support_torch_compile
|
|
from vllm.config import (CompilationConfig, CompilationLevel, VllmConfig,
|
|
set_current_vllm_config)
|
|
from vllm.utils import direct_register_custom_op
|
|
|
|
global_counter = 0
|
|
|
|
# create a library to hold the custom op
|
|
silly_lib = Library("silly", "FRAGMENT") # noqa
|
|
|
|
|
|
def silly_attention(q: torch.Tensor, k: torch.Tensor, v: torch.Tensor,
|
|
out: torch.Tensor) -> None:
|
|
global global_counter
|
|
global_counter += 1
|
|
print(f"{global_counter=}")
|
|
out.copy_(q)
|
|
out[0] += 1
|
|
|
|
|
|
def silly_attention_fake(q: torch.Tensor, k: torch.Tensor, v: torch.Tensor,
|
|
out: torch.Tensor) -> None:
|
|
return
|
|
|
|
|
|
direct_register_custom_op(
|
|
op_name="attention",
|
|
op_func=silly_attention,
|
|
mutates_args=["out"],
|
|
fake_impl=silly_attention_fake,
|
|
target_lib=silly_lib,
|
|
)
|
|
|
|
|
|
@support_torch_compile
|
|
class SillyModel(nn.Module):
|
|
|
|
def __init__(self,
|
|
*,
|
|
vllm_config: VllmConfig,
|
|
prefix: str = '',
|
|
**kwargs) -> None:
|
|
super().__init__()
|
|
|
|
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
|
"""
|
|
Overall effect:
|
|
x += 1
|
|
x[0] += 2
|
|
global_counter += 2
|
|
"""
|
|
x = x + 1
|
|
x = x + 2
|
|
out = torch.empty_like(x)
|
|
torch.ops.silly.attention(x, x, x, out)
|
|
x = out
|
|
x = x - 2
|
|
x = x - 1
|
|
out = torch.empty_like(x)
|
|
torch.ops.silly.attention(x, x, x, out)
|
|
x = out
|
|
x = x + 1
|
|
return x
|
|
|
|
|
|
def test_simple_piecewise_compile():
|
|
|
|
vllm_config = VllmConfig(compilation_config=CompilationConfig(
|
|
level=CompilationLevel.PIECEWISE,
|
|
use_cudagraph=True,
|
|
splitting_ops=["silly.attention"],
|
|
cudagraph_copy_inputs=True,
|
|
))
|
|
with set_current_vllm_config(vllm_config):
|
|
model = SillyModel(vllm_config=vllm_config, prefix='')
|
|
|
|
inputs = torch.randn(100).cuda()
|
|
|
|
with compilation_counter.expect(
|
|
num_graphs_seen=1, # one graph for the model
|
|
num_piecewise_graphs_seen=5, # 2 * num_layers + 1
|
|
num_piecewise_capturable_graphs_seen=3, # 1 + num_layers
|
|
num_inductor_compilations=3, # num_piecewise_capturable_graphs_seen
|
|
num_cudagraph_caputured=
|
|
6, # num_cudagraph_sizes * num_piecewise_capturable_graphs_seen
|
|
):
|
|
|
|
with set_compile_context([1, 2]):
|
|
model(inputs)
|
|
|
|
model(torch.randn(2).cuda())
|
|
model(torch.randn(1).cuda())
|
|
|
|
input = torch.zeros(2).cuda()
|
|
global global_counter
|
|
global_counter = 0
|
|
output = model(input)
|
|
assert global_counter == 2
|
|
assert torch.allclose(output.cpu(), torch.tensor([3., 1.]))
|