vllm/tests/compile/piecewise/test_simple.py
youkaichao 05d1f8c9c6
[misc] move functions to config.py (#10624)
Signed-off-by: youkaichao <youkaichao@gmail.com>
2024-11-25 09:27:30 +00:00

111 lines
3.1 KiB
Python

"""
Test the piecewise compilation with a simple model so that we
can exactly calculate the expected output and side effects.
"""
import torch
from torch import nn
from torch.library import Library
from vllm.compilation.compile_context import set_compile_context
from vllm.compilation.counter import compilation_counter
from vllm.compilation.decorators import support_torch_compile
from vllm.config import (CompilationConfig, CompilationLevel, VllmConfig,
set_current_vllm_config)
from vllm.utils import direct_register_custom_op
global_counter = 0
# create a library to hold the custom op
silly_lib = Library("silly", "FRAGMENT") # noqa
def silly_attention(q: torch.Tensor, k: torch.Tensor, v: torch.Tensor,
out: torch.Tensor) -> None:
global global_counter
global_counter += 1
print(f"{global_counter=}")
out.copy_(q)
out[0] += 1
def silly_attention_fake(q: torch.Tensor, k: torch.Tensor, v: torch.Tensor,
out: torch.Tensor) -> None:
return
direct_register_custom_op(
op_name="attention",
op_func=silly_attention,
mutates_args=["out"],
fake_impl=silly_attention_fake,
target_lib=silly_lib,
)
@support_torch_compile
class SillyModel(nn.Module):
def __init__(self,
*,
vllm_config: VllmConfig,
prefix: str = '',
**kwargs) -> None:
super().__init__()
def forward(self, x: torch.Tensor) -> torch.Tensor:
"""
Overall effect:
x += 1
x[0] += 2
global_counter += 2
"""
x = x + 1
x = x + 2
out = torch.empty_like(x)
torch.ops.silly.attention(x, x, x, out)
x = out
x = x - 2
x = x - 1
out = torch.empty_like(x)
torch.ops.silly.attention(x, x, x, out)
x = out
x = x + 1
return x
def test_simple_piecewise_compile():
vllm_config = VllmConfig(compilation_config=CompilationConfig(
level=CompilationLevel.PIECEWISE,
use_cudagraph=True,
splitting_ops=["silly.attention"],
cudagraph_copy_inputs=True,
))
with set_current_vllm_config(vllm_config):
model = SillyModel(vllm_config=vllm_config, prefix='')
inputs = torch.randn(100).cuda()
with compilation_counter.expect(
num_graphs_seen=1, # one graph for the model
num_piecewise_graphs_seen=5, # 2 * num_layers + 1
num_piecewise_capturable_graphs_seen=3, # 1 + num_layers
num_inductor_compilations=3, # num_piecewise_capturable_graphs_seen
num_cudagraph_caputured=
6, # num_cudagraph_sizes * num_piecewise_capturable_graphs_seen
):
with set_compile_context([1, 2]):
model(inputs)
model(torch.randn(2).cuda())
model(torch.randn(1).cuda())
input = torch.zeros(2).cuda()
global global_counter
global_counter = 0
output = model(input)
assert global_counter == 2
assert torch.allclose(output.cpu(), torch.tensor([3., 1.]))