vllm/vllm/worker/worker_base.py
Kuntai Du 0590ec3fd9
[Core] Implement disagg prefill by StatelessProcessGroup (#10502)
This PR provides initial support for single-node disaggregated prefill in 1P1D scenario.
Signed-off-by: KuntaiDu <kuntai@uchicago.edu>
Co-authored-by: ApostaC <yihua98@uchicago.edu>
Co-authored-by: YaoJiayi <120040070@link.cuhk.edu.cn>
2024-12-01 19:01:00 -06:00

492 lines
19 KiB
Python

import dataclasses
import os
import time
from abc import ABC, abstractmethod
from typing import Any, Dict, List, Optional, Set, Tuple, Type, Union
import torch
from vllm.config import ObservabilityConfig, VllmConfig
from vllm.distributed import broadcast_tensor_dict, get_pp_group, get_tp_group
from vllm.logger import init_logger
from vllm.lora.request import LoRARequest
from vllm.model_executor.layers.sampler import SamplerOutput
from vllm.platforms import current_platform
from vllm.sequence import ExecuteModelRequest, IntermediateTensors
from vllm.utils import (enable_trace_function_call_for_thread,
resolve_obj_by_qualname, update_environment_variables)
from vllm.worker.model_runner_base import (BroadcastableModelInput,
ModelRunnerBase,
ModelRunnerInputBase)
logger = init_logger(__name__)
class WorkerBase(ABC):
"""Worker interface that allows vLLM to cleanly separate implementations for
different hardware. Also abstracts control plane communication, e.g., to
communicate request metadata to other workers.
"""
def __init__(
self,
vllm_config: VllmConfig,
) -> None:
self.vllm_config = vllm_config
self.model_config = vllm_config.model_config
self.cache_config = vllm_config.cache_config
self.lora_config = vllm_config.lora_config
self.load_config = vllm_config.load_config
self.parallel_config = vllm_config.parallel_config
self.scheduler_config = vllm_config.scheduler_config
self.device_config = vllm_config.device_config
self.speculative_config = vllm_config.speculative_config
self.prompt_adapter_config = vllm_config.prompt_adapter_config
self.observability_config = vllm_config.observability_config
self.kv_transfer_config = vllm_config.kv_transfer_config
@abstractmethod
def init_device(self) -> None:
"""Initialize device state, such as loading the model or other on-device
memory allocations.
"""
raise NotImplementedError
@abstractmethod
def determine_num_available_blocks(self) -> Tuple[int, int]:
"""Determine the number of available blocks for the GPU KV cache and
swappable CPU KV cache.
The implementation may run profiling or other heuristics to determine
the size of caches.
Returns a Tuple[num_gpu_blocks, num_cpu_blocks], where num_gpu_blocks
are blocks that are "active" on the device and can be appended to.
num_cpu_blocks refers to "swapped" blocks in CPU memory and cannot be
appended to.
"""
raise NotImplementedError
@abstractmethod
def initialize_cache(self, num_gpu_blocks: int,
num_cpu_blocks: int) -> None:
"""Initialize the KV cache with the given size in blocks.
"""
raise NotImplementedError
@current_platform.inference_mode()
def start_worker_execution_loop(self) -> None:
"""Execute model loop in parallel worker.
You can stop the loop by executing a driver worker with an empty output.
See `stop_remote_worker_execution_loop` for more details.
"""
while True:
output = self.execute_model(execute_model_req=None)
if output is None:
return None
@abstractmethod
def execute_model(
self,
execute_model_req: Optional[ExecuteModelRequest] = None
) -> Optional[List[SamplerOutput]]:
raise NotImplementedError
@abstractmethod
def get_cache_block_size_bytes(self) -> int:
"""Return the size of a single cache block, in bytes. Used in
speculative decoding.
"""
raise NotImplementedError
@abstractmethod
def add_lora(self, lora_request: LoRARequest) -> bool:
raise NotImplementedError
@abstractmethod
def remove_lora(self, lora_id: int) -> bool:
raise NotImplementedError
@abstractmethod
def pin_lora(self, lora_id: int) -> bool:
raise NotImplementedError
@abstractmethod
def list_loras(self) -> Set[int]:
raise NotImplementedError
class LoraNotSupportedWorkerBase(WorkerBase):
"""Partial implementation of WorkerBase that raises exceptions when LoRA
methods are invoked.
"""
def add_lora(self, lora_request: LoRARequest) -> bool:
raise ValueError(f"{type(self)} does not support LoRA")
def remove_lora(self, lora_id: int) -> bool:
raise ValueError(f"{type(self)} does not support LoRA")
def pin_lora(self, lora_id: int) -> bool:
return ValueError(
f"{type(self)} does not support LoRA") # type: ignore
def list_loras(self) -> Set[int]:
raise ValueError(f"{type(self)} does not support LoRA")
@dataclasses.dataclass(frozen=True)
class WorkerInput:
"""Local inputs to each worker. May contain device-specific data. These
fields should be broadcastable to other workers.
"""
num_seq_groups: Optional[int] = None
blocks_to_swap_in: Optional[torch.Tensor] = None
blocks_to_swap_out: Optional[torch.Tensor] = None
blocks_to_copy: Optional[torch.Tensor] = None
virtual_engine: int = 0
num_steps: int = 1
@classmethod
def from_broadcasted_tensor_dict(
cls: Type["WorkerInput"],
tensor_dict: Dict[str, Any],
) -> "WorkerInput":
"""
Pop fields from the given tensor_dict and populate a new instance of
WorkerInput.
"""
return cls(
num_seq_groups=tensor_dict.pop("num_seq_groups"),
blocks_to_swap_in=tensor_dict.pop("blocks_to_swap_in"),
blocks_to_swap_out=tensor_dict.pop("blocks_to_swap_out"),
blocks_to_copy=tensor_dict.pop("blocks_to_copy"),
virtual_engine=tensor_dict["virtual_engine"],
num_steps=tensor_dict.pop("num_steps"),
)
def as_broadcastable_tensor_dict(
self) -> Dict[str, Union[int, torch.Tensor]]:
"""
Extract broadcastable fields.
"""
tensor_dict = {
"num_seq_groups": self.num_seq_groups,
"blocks_to_swap_in": self.blocks_to_swap_in,
"blocks_to_swap_out": self.blocks_to_swap_out,
"blocks_to_copy": self.blocks_to_copy,
"virtual_engine": self.virtual_engine,
"num_steps": self.num_steps,
}
return tensor_dict
class LocalOrDistributedWorkerBase(WorkerBase):
"""
Partial implementation of WorkerBase that has a default `execute_model`
definition to perform metadata transfer between workers when in distributed
mode. Subclasses of this interface should use model runners that inherit
from ModelRunnerBase, and should only need to implement worker-local logic.
If custom control plane logic is needed to transfer metadata, or if the
model runner cannot inherit from ModelRunnerBase, use WorkerBase instead.
"""
is_driver_worker: bool
model_runner: ModelRunnerBase
observability_config: Optional[ObservabilityConfig] = None
@property
@abstractmethod
def do_metadata_broadcast(self) -> bool:
"""
Used by the default `execute_model` to check whether broadcast is
needed to transfer request inputs from the driver worker to other
workers in the TP group. If WorkerBase subclass only supports
single-worker execution, then this method should return False.
"""
raise NotImplementedError
@property
@abstractmethod
def kv_cache(self) -> Optional[List[List[torch.Tensor]]]:
"""
Gets the list of kv caches to pass to the worker's model runner. Each
element in the list is a kv cache corresponding to a particular virtual
engine (PP stream). Used by the default `execute_model`. If the worker's
model runner does not follow the ModelRunnerBase interface, then inherit
from WorkerBase instead.
"""
raise NotImplementedError
@abstractmethod
def prepare_worker_input(
self, execute_model_req: ExecuteModelRequest) -> WorkerInput:
"""
Prepare the inputs to WorkerBase.execute_worker from an execution
request. This method may move data to the worker's local device. It is
not allowed to communicate with other workers or devices.
"""
raise NotImplementedError
@abstractmethod
def execute_worker(self, worker_input: WorkerInput) -> None:
"""
Process an execution request.
"""
raise NotImplementedError
def _get_worker_input_from_broadcast(
self
) -> Optional[Tuple[BroadcastableModelInput, WorkerInput, Dict[
str, torch.Tensor]]]:
""" Get the worker input from the broadcasted tensor dict. """
assert self.do_metadata_broadcast
assert not self.is_driver_worker
broadcast_data = broadcast_tensor_dict(src=0)
if not broadcast_data:
return None
worker_input = WorkerInput.from_broadcasted_tensor_dict(broadcast_data)
model_input = (
self.model_runner.make_model_input_from_broadcasted_tensor_dict(
broadcast_data))
kwargs = extract_previous_hidden_states(broadcast_data)
return model_input, worker_input, kwargs
def _get_driver_input_and_broadcast(
self, execute_model_req: ExecuteModelRequest
) -> Tuple[BroadcastableModelInput, WorkerInput, Dict[str, torch.Tensor]]:
""" Get the driver input and broadcast it to other workers. """
assert self.is_driver_worker
worker_input: WorkerInput = self.prepare_worker_input(
execute_model_req=execute_model_req)
model_input: ModelRunnerInputBase = (
self.model_runner.prepare_model_input(
execute_model_req.seq_group_metadata_list,
execute_model_req.virtual_engine,
execute_model_req.finished_requests_ids))
kwargs = extract_previous_hidden_states(execute_model_req)
if self.do_metadata_broadcast:
broadcast_data = worker_input.as_broadcastable_tensor_dict()
broadcast_data.update(model_input.as_broadcastable_tensor_dict())
broadcast_data.update(kwargs)
broadcast_tensor_dict(broadcast_data, src=0)
if execute_model_req.async_callback:
model_input = dataclasses.replace( # type: ignore
model_input,
async_callback=execute_model_req.async_callback)
return model_input, worker_input, kwargs
def prepare_input(
self,
execute_model_req: Optional[ExecuteModelRequest] = None
) -> Optional[Tuple[BroadcastableModelInput, WorkerInput, Dict[
str, torch.Tensor]]]:
"""
Prepare the inputs to ModelRunner and workers.
"""
if self.is_driver_worker:
if execute_model_req is None:
if self.do_metadata_broadcast:
# This signals that there's no more requests to process for
# now. All workers are running infinite loop with
# broadcast_tensor_dict, and it stops the loop when the
# driver broadcasts an empty input. Send an empty input to
# notify all other workers to stop their execution loop.
broadcast_tensor_dict({}, src=0)
return None
return self._get_driver_input_and_broadcast(execute_model_req)
else:
return self._get_worker_input_from_broadcast()
def execute_model(
self,
execute_model_req: Optional[ExecuteModelRequest] = None,
) -> Optional[List[SamplerOutput]]:
"""Executes at least one model step on the given sequences, unless no
sequences are provided."""
start_time = time.perf_counter()
inputs = self.prepare_input(execute_model_req)
if inputs is None:
return None
model_input, worker_input, kwargs = inputs
num_steps = worker_input.num_steps
self.execute_worker(worker_input)
# If there is no input, we don't need to execute the model.
if worker_input.num_seq_groups == 0:
return []
intermediate_tensors = None
orig_model_execute_time = 0.0
if not get_pp_group().is_first_rank:
intermediate_tensors = IntermediateTensors(
get_pp_group().recv_tensor_dict(
all_gather_group=get_tp_group()))
if (self.observability_config is not None
and self.observability_config.collect_model_execute_time):
orig_model_execute_time = intermediate_tensors.tensors.get(
"model_execute_time", torch.tensor(0)).item()
output = self.model_runner.execute_model(
model_input=model_input,
kv_caches=self.kv_cache[worker_input.virtual_engine]
if self.kv_cache is not None else None,
intermediate_tensors=intermediate_tensors,
num_steps=num_steps,
**kwargs,
)
model_execute_time = time.perf_counter() - start_time
if not get_pp_group().is_last_rank:
# output is IntermediateTensors
if (self.observability_config is not None
and self.observability_config.collect_model_execute_time):
output.tensors["model_execute_time"] = torch.tensor(
model_execute_time + orig_model_execute_time)
get_pp_group().send_tensor_dict(output.tensors,
all_gather_group=get_tp_group())
return [None]
if (self.observability_config is not None
and self.observability_config.collect_model_execute_time
and output is not None):
for o in output:
o.model_execute_time = (orig_model_execute_time +
model_execute_time)
# output is List[SamplerOutput]
return output
def _execute_model_spmd(
self,
execute_model_req: ExecuteModelRequest,
intermediate_tensors: Optional[IntermediateTensors] = None
) -> Optional[List[SamplerOutput]]:
"""
Execute model in Single Program Multiple Data (SPMD) fashion.
All workers take the same request, prepare the input and
execute the model.
"""
assert execute_model_req is not None, (
"_execute_model_spmd() requires each worker to take in an "
"ExecuteModelRequest")
worker_input: WorkerInput = self.prepare_worker_input(
execute_model_req=execute_model_req)
model_input: ModelRunnerInputBase = (
self.model_runner.prepare_model_input(
execute_model_req.seq_group_metadata_list))
self.execute_worker(worker_input)
# If there is no input, we don't need to execute the model.
if worker_input.num_seq_groups == 0:
return []
kwargs = extract_previous_hidden_states(execute_model_req)
return self.model_runner.execute_model(
model_input=model_input,
kv_caches=self.kv_cache[worker_input.virtual_engine]
if self.kv_cache is not None else None,
intermediate_tensors=intermediate_tensors,
**kwargs,
)
class WorkerWrapperBase:
"""
The whole point of this class is to lazily initialize the worker.
We first instantiate the WorkerWrapper, which remembers the worker module
and class name. Then, when we call `update_environment_variables`, and the
real initialization happens in `init_worker`.
"""
def __init__(
self,
vllm_config: VllmConfig,
) -> None:
self.vllm_config = vllm_config
trust_remote_code = vllm_config.model_config.trust_remote_code
self.worker: Optional[WorkerBase] = None
if trust_remote_code:
# note: lazy import to avoid importing torch before initializing
from vllm.utils import init_cached_hf_modules
init_cached_hf_modules()
@staticmethod
def update_environment_variables(envs: Dict[str, str]) -> None:
key = 'CUDA_VISIBLE_DEVICES'
if key in envs and key in os.environ:
# overwriting CUDA_VISIBLE_DEVICES is desired behavior
# suppress the warning in `update_environment_variables`
del os.environ[key]
update_environment_variables(envs)
def init_worker(self, *args, **kwargs):
"""
Here we inject some common logic before initializing the worker.
Arguments are passed to the worker class constructor.
"""
enable_trace_function_call_for_thread()
# see https://github.com/NVIDIA/nccl/issues/1234
os.environ['NCCL_CUMEM_ENABLE'] = '0'
from vllm.plugins import load_general_plugins
load_general_plugins()
worker_class = resolve_obj_by_qualname(
self.vllm_config.parallel_config.worker_cls)
self.worker = worker_class(*args, **kwargs)
assert self.worker is not None
def execute_method(self, method, *args, **kwargs):
try:
target = self if self.worker is None else self.worker
executor = getattr(target, method)
return executor(*args, **kwargs)
except Exception as e:
# if the driver worker also execute methods,
# exceptions in the rest worker may cause deadlock in rpc like ray
# see https://github.com/vllm-project/vllm/issues/3455
# print the error and inform the user to solve the error
msg = (f"Error executing method {method}. "
"This might cause deadlock in distributed execution.")
logger.exception(msg)
raise e
def __getattr__(self, attr):
return getattr(self.worker, attr)
def extract_previous_hidden_states(
data: Union[ExecuteModelRequest, Dict[str, torch.Tensor]]) -> \
Dict[str, torch.Tensor]:
"""If data contains previous_hidden_states, extract it. This returns a dict
which can be used directly as additional kwargs in any following
execute_model calls. This is used in draft models like EAGLE."""
output = {}
# When called from non-driver worker, data is dict but when called from
# driver worker, data is ExecuteModelRequest.
if isinstance(data, dict):
if "previous_hidden_states" in data:
output["previous_hidden_states"] = data["previous_hidden_states"]
elif data.previous_hidden_states is not None:
output["previous_hidden_states"] = data.previous_hidden_states\
.hidden_states
return output