438 lines
16 KiB
Python
438 lines
16 KiB
Python
# Adapted from
|
|
# https://github.com/lm-sys/FastChat/blob/168ccc29d3f7edc50823016105c024fe2282732a/fastchat/protocol/openai_api_protocol.py
|
|
import time
|
|
from typing import Dict, List, Literal, Optional, Union
|
|
|
|
import torch
|
|
from pydantic import BaseModel, Field, conint, model_validator
|
|
|
|
from vllm.sampling_params import SamplingParams
|
|
from vllm.utils import random_uuid
|
|
|
|
|
|
class ErrorResponse(BaseModel):
|
|
object: str = "error"
|
|
message: str
|
|
type: str
|
|
param: Optional[str] = None
|
|
code: int
|
|
|
|
|
|
class ModelPermission(BaseModel):
|
|
id: str = Field(default_factory=lambda: f"modelperm-{random_uuid()}")
|
|
object: str = "model_permission"
|
|
created: int = Field(default_factory=lambda: int(time.time()))
|
|
allow_create_engine: bool = False
|
|
allow_sampling: bool = True
|
|
allow_logprobs: bool = True
|
|
allow_search_indices: bool = False
|
|
allow_view: bool = True
|
|
allow_fine_tuning: bool = False
|
|
organization: str = "*"
|
|
group: Optional[str] = None
|
|
is_blocking: str = False
|
|
|
|
|
|
class ModelCard(BaseModel):
|
|
id: str
|
|
object: str = "model"
|
|
created: int = Field(default_factory=lambda: int(time.time()))
|
|
owned_by: str = "vllm"
|
|
root: Optional[str] = None
|
|
parent: Optional[str] = None
|
|
permission: List[ModelPermission] = Field(default_factory=list)
|
|
|
|
|
|
class ModelList(BaseModel):
|
|
object: str = "list"
|
|
data: List[ModelCard] = Field(default_factory=list)
|
|
|
|
|
|
class UsageInfo(BaseModel):
|
|
prompt_tokens: int = 0
|
|
total_tokens: int = 0
|
|
completion_tokens: Optional[int] = 0
|
|
|
|
|
|
class ResponseFormat(BaseModel):
|
|
# type must be "json_object" or "text"
|
|
type: str = Literal["text", "json_object"]
|
|
|
|
|
|
class ChatCompletionRequest(BaseModel):
|
|
# Ordered by official OpenAI API documentation
|
|
# https://platform.openai.com/docs/api-reference/chat/create
|
|
messages: List[Dict[str, str]]
|
|
model: str
|
|
frequency_penalty: Optional[float] = 0.0
|
|
logit_bias: Optional[Dict[str, float]] = None
|
|
logprobs: Optional[bool] = False
|
|
top_logprobs: Optional[int] = None
|
|
max_tokens: Optional[int] = None
|
|
n: Optional[int] = 1
|
|
presence_penalty: Optional[float] = 0.0
|
|
response_format: Optional[ResponseFormat] = None
|
|
seed: Optional[int] = None
|
|
stop: Optional[Union[str, List[str]]] = Field(default_factory=list)
|
|
stream: Optional[bool] = False
|
|
temperature: Optional[float] = 0.7
|
|
top_p: Optional[float] = 1.0
|
|
user: Optional[str] = None
|
|
|
|
# doc: begin-chat-completion-sampling-params
|
|
best_of: Optional[int] = None
|
|
use_beam_search: Optional[bool] = False
|
|
top_k: Optional[int] = -1
|
|
min_p: Optional[float] = 0.0
|
|
repetition_penalty: Optional[float] = 1.0
|
|
length_penalty: Optional[float] = 1.0
|
|
early_stopping: Optional[bool] = False
|
|
ignore_eos: Optional[bool] = False
|
|
min_tokens: Optional[int] = 0
|
|
stop_token_ids: Optional[List[int]] = Field(default_factory=list)
|
|
skip_special_tokens: Optional[bool] = True
|
|
spaces_between_special_tokens: Optional[bool] = True
|
|
# doc: end-chat-completion-sampling-params
|
|
|
|
# doc: begin-chat-completion-extra-params
|
|
echo: Optional[bool] = Field(
|
|
default=False,
|
|
description=(
|
|
"If true, the new message will be prepended with the last message "
|
|
"if they belong to the same role."),
|
|
)
|
|
add_generation_prompt: Optional[bool] = Field(
|
|
default=True,
|
|
description=
|
|
("If true, the generation prompt will be added to the chat template. "
|
|
"This is a parameter used by chat template in tokenizer config of the "
|
|
"model."),
|
|
)
|
|
include_stop_str_in_output: Optional[bool] = Field(
|
|
default=False,
|
|
description=(
|
|
"Whether to include the stop string in the output. "
|
|
"This is only applied when the stop or stop_token_ids is set."),
|
|
)
|
|
guided_json: Optional[Union[str, dict, BaseModel]] = Field(
|
|
default=None,
|
|
description=("If specified, the output will follow the JSON schema."),
|
|
)
|
|
guided_regex: Optional[str] = Field(
|
|
default=None,
|
|
description=(
|
|
"If specified, the output will follow the regex pattern."),
|
|
)
|
|
guided_choice: Optional[List[str]] = Field(
|
|
default=None,
|
|
description=(
|
|
"If specified, the output will be exactly one of the choices."),
|
|
)
|
|
guided_grammar: Optional[str] = Field(
|
|
default=None,
|
|
description=(
|
|
"If specified, the output will follow the context free grammar."),
|
|
)
|
|
guided_decoding_backend: Optional[str] = Field(
|
|
default=None,
|
|
description=(
|
|
"If specified, will override the default guided decoding backend "
|
|
"of the server for this specific request. If set, must be either "
|
|
"'outlines' / 'lm-format-enforcer'"))
|
|
|
|
# doc: end-chat-completion-extra-params
|
|
|
|
def to_sampling_params(self) -> SamplingParams:
|
|
if self.logprobs and not self.top_logprobs:
|
|
raise ValueError("Top logprobs must be set when logprobs is.")
|
|
|
|
logits_processors = None
|
|
if self.logit_bias:
|
|
|
|
def logit_bias_logits_processor(
|
|
token_ids: List[int],
|
|
logits: torch.Tensor) -> torch.Tensor:
|
|
for token_id, bias in self.logit_bias.items():
|
|
# Clamp the bias between -100 and 100 per OpenAI API spec
|
|
bias = min(100, max(-100, bias))
|
|
logits[int(token_id)] += bias
|
|
return logits
|
|
|
|
logits_processors = [logit_bias_logits_processor]
|
|
|
|
return SamplingParams(
|
|
n=self.n,
|
|
presence_penalty=self.presence_penalty,
|
|
frequency_penalty=self.frequency_penalty,
|
|
repetition_penalty=self.repetition_penalty,
|
|
temperature=self.temperature,
|
|
top_p=self.top_p,
|
|
min_p=self.min_p,
|
|
seed=self.seed,
|
|
stop=self.stop,
|
|
stop_token_ids=self.stop_token_ids,
|
|
max_tokens=self.max_tokens,
|
|
min_tokens=self.min_tokens,
|
|
logprobs=self.top_logprobs if self.logprobs else None,
|
|
prompt_logprobs=self.top_logprobs if self.echo else None,
|
|
best_of=self.best_of,
|
|
top_k=self.top_k,
|
|
ignore_eos=self.ignore_eos,
|
|
use_beam_search=self.use_beam_search,
|
|
early_stopping=self.early_stopping,
|
|
skip_special_tokens=self.skip_special_tokens,
|
|
spaces_between_special_tokens=self.spaces_between_special_tokens,
|
|
include_stop_str_in_output=self.include_stop_str_in_output,
|
|
length_penalty=self.length_penalty,
|
|
logits_processors=logits_processors,
|
|
)
|
|
|
|
@model_validator(mode="before")
|
|
@classmethod
|
|
def check_guided_decoding_count(cls, data):
|
|
guide_count = sum([
|
|
"guided_json" in data and data["guided_json"] is not None,
|
|
"guided_regex" in data and data["guided_regex"] is not None,
|
|
"guided_choice" in data and data["guided_choice"] is not None
|
|
])
|
|
if guide_count > 1:
|
|
raise ValueError(
|
|
"You can only use one kind of guided decoding "
|
|
"('guided_json', 'guided_regex' or 'guided_choice').")
|
|
return data
|
|
|
|
|
|
class CompletionRequest(BaseModel):
|
|
# Ordered by official OpenAI API documentation
|
|
# https://platform.openai.com/docs/api-reference/completions/create
|
|
model: str
|
|
prompt: Union[List[int], List[List[int]], str, List[str]]
|
|
best_of: Optional[int] = None
|
|
echo: Optional[bool] = False
|
|
frequency_penalty: Optional[float] = 0.0
|
|
logit_bias: Optional[Dict[str, float]] = None
|
|
logprobs: Optional[int] = None
|
|
max_tokens: Optional[int] = 16
|
|
n: Optional[int] = 1
|
|
presence_penalty: Optional[float] = 0.0
|
|
seed: Optional[int] = None
|
|
stop: Optional[Union[str, List[str]]] = Field(default_factory=list)
|
|
stream: Optional[bool] = False
|
|
suffix: Optional[str] = None
|
|
temperature: Optional[float] = 1.0
|
|
top_p: Optional[float] = 1.0
|
|
user: Optional[str] = None
|
|
|
|
# doc: begin-completion-sampling-params
|
|
use_beam_search: Optional[bool] = False
|
|
top_k: Optional[int] = -1
|
|
min_p: Optional[float] = 0.0
|
|
repetition_penalty: Optional[float] = 1.0
|
|
length_penalty: Optional[float] = 1.0
|
|
early_stopping: Optional[bool] = False
|
|
stop_token_ids: Optional[List[int]] = Field(default_factory=list)
|
|
ignore_eos: Optional[bool] = False
|
|
min_tokens: Optional[int] = 0
|
|
skip_special_tokens: Optional[bool] = True
|
|
spaces_between_special_tokens: Optional[bool] = True
|
|
truncate_prompt_tokens: Optional[conint(ge=1)] = None
|
|
# doc: end-completion-sampling-params
|
|
|
|
# doc: begin-completion-extra-params
|
|
include_stop_str_in_output: Optional[bool] = Field(
|
|
default=False,
|
|
description=(
|
|
"Whether to include the stop string in the output. "
|
|
"This is only applied when the stop or stop_token_ids is set."),
|
|
)
|
|
response_format: Optional[ResponseFormat] = Field(
|
|
default=None,
|
|
description=
|
|
("Similar to chat completion, this parameter specifies the format of "
|
|
"output. Only {'type': 'json_object'} or {'type': 'text' } is "
|
|
"supported."),
|
|
)
|
|
guided_json: Optional[Union[str, dict, BaseModel]] = Field(
|
|
default=None,
|
|
description=("If specified, the output will follow the JSON schema."),
|
|
)
|
|
guided_regex: Optional[str] = Field(
|
|
default=None,
|
|
description=(
|
|
"If specified, the output will follow the regex pattern."),
|
|
)
|
|
guided_choice: Optional[List[str]] = Field(
|
|
default=None,
|
|
description=(
|
|
"If specified, the output will be exactly one of the choices."),
|
|
)
|
|
guided_grammar: Optional[str] = Field(
|
|
default=None,
|
|
description=(
|
|
"If specified, the output will follow the context free grammar."),
|
|
)
|
|
guided_decoding_backend: Optional[str] = Field(
|
|
default=None,
|
|
description=(
|
|
"If specified, will override the default guided decoding backend "
|
|
"of the server for this specific request. If set, must be one of "
|
|
"'outlines' / 'lm-format-enforcer'"))
|
|
|
|
# doc: end-completion-extra-params
|
|
|
|
def to_sampling_params(self):
|
|
echo_without_generation = self.echo and self.max_tokens == 0
|
|
|
|
logits_processors = None
|
|
if self.logit_bias:
|
|
|
|
def logit_bias_logits_processor(
|
|
token_ids: List[int],
|
|
logits: torch.Tensor) -> torch.Tensor:
|
|
for token_id, bias in self.logit_bias.items():
|
|
# Clamp the bias between -100 and 100 per OpenAI API spec
|
|
bias = min(100, max(-100, bias))
|
|
logits[int(token_id)] += bias
|
|
return logits
|
|
|
|
logits_processors = [logit_bias_logits_processor]
|
|
|
|
return SamplingParams(
|
|
n=self.n,
|
|
best_of=self.best_of,
|
|
presence_penalty=self.presence_penalty,
|
|
frequency_penalty=self.frequency_penalty,
|
|
repetition_penalty=self.repetition_penalty,
|
|
temperature=self.temperature,
|
|
top_p=self.top_p,
|
|
top_k=self.top_k,
|
|
min_p=self.min_p,
|
|
seed=self.seed,
|
|
stop=self.stop,
|
|
stop_token_ids=self.stop_token_ids,
|
|
ignore_eos=self.ignore_eos,
|
|
max_tokens=self.max_tokens if not echo_without_generation else 1,
|
|
min_tokens=self.min_tokens,
|
|
logprobs=self.logprobs,
|
|
use_beam_search=self.use_beam_search,
|
|
early_stopping=self.early_stopping,
|
|
prompt_logprobs=self.logprobs if self.echo else None,
|
|
skip_special_tokens=self.skip_special_tokens,
|
|
spaces_between_special_tokens=(self.spaces_between_special_tokens),
|
|
include_stop_str_in_output=self.include_stop_str_in_output,
|
|
length_penalty=self.length_penalty,
|
|
logits_processors=logits_processors,
|
|
truncate_prompt_tokens=self.truncate_prompt_tokens,
|
|
)
|
|
|
|
@model_validator(mode="before")
|
|
@classmethod
|
|
def check_guided_decoding_count(cls, data):
|
|
guide_count = sum([
|
|
"guided_json" in data and data["guided_json"] is not None,
|
|
"guided_regex" in data and data["guided_regex"] is not None,
|
|
"guided_choice" in data and data["guided_choice"] is not None
|
|
])
|
|
if guide_count > 1:
|
|
raise ValueError(
|
|
"You can only use one kind of guided decoding "
|
|
"('guided_json', 'guided_regex' or 'guided_choice').")
|
|
return data
|
|
|
|
|
|
class LogProbs(BaseModel):
|
|
text_offset: List[int] = Field(default_factory=list)
|
|
token_logprobs: List[Optional[float]] = Field(default_factory=list)
|
|
tokens: List[str] = Field(default_factory=list)
|
|
top_logprobs: Optional[List[Optional[Dict[str, float]]]] = None
|
|
|
|
|
|
class CompletionResponseChoice(BaseModel):
|
|
index: int
|
|
text: str
|
|
logprobs: Optional[LogProbs] = None
|
|
finish_reason: Optional[Literal["stop", "length"]] = None
|
|
stop_reason: Union[None, int, str] = Field(
|
|
default=None,
|
|
description=(
|
|
"The stop string or token id that caused the completion "
|
|
"to stop, None if the completion finished for some other reason "
|
|
"including encountering the EOS token"),
|
|
)
|
|
|
|
|
|
class CompletionResponse(BaseModel):
|
|
id: str = Field(default_factory=lambda: f"cmpl-{random_uuid()}")
|
|
object: str = "text_completion"
|
|
created: int = Field(default_factory=lambda: int(time.time()))
|
|
model: str
|
|
choices: List[CompletionResponseChoice]
|
|
usage: UsageInfo
|
|
|
|
|
|
class CompletionResponseStreamChoice(BaseModel):
|
|
index: int
|
|
text: str
|
|
logprobs: Optional[LogProbs] = None
|
|
finish_reason: Optional[Literal["stop", "length"]] = None
|
|
stop_reason: Union[None, int, str] = Field(
|
|
default=None,
|
|
description=(
|
|
"The stop string or token id that caused the completion "
|
|
"to stop, None if the completion finished for some other reason "
|
|
"including encountering the EOS token"),
|
|
)
|
|
|
|
|
|
class CompletionStreamResponse(BaseModel):
|
|
id: str = Field(default_factory=lambda: f"cmpl-{random_uuid()}")
|
|
object: str = "text_completion"
|
|
created: int = Field(default_factory=lambda: int(time.time()))
|
|
model: str
|
|
choices: List[CompletionResponseStreamChoice]
|
|
usage: Optional[UsageInfo] = Field(default=None)
|
|
|
|
|
|
class ChatMessage(BaseModel):
|
|
role: str
|
|
content: str
|
|
|
|
|
|
class ChatCompletionResponseChoice(BaseModel):
|
|
index: int
|
|
message: ChatMessage
|
|
logprobs: Optional[LogProbs] = None
|
|
finish_reason: Optional[Literal["stop", "length"]] = None
|
|
stop_reason: Union[None, int, str] = None
|
|
|
|
|
|
class ChatCompletionResponse(BaseModel):
|
|
id: str = Field(default_factory=lambda: f"chatcmpl-{random_uuid()}")
|
|
object: str = "chat.completion"
|
|
created: int = Field(default_factory=lambda: int(time.time()))
|
|
model: str
|
|
choices: List[ChatCompletionResponseChoice]
|
|
usage: UsageInfo
|
|
|
|
|
|
class DeltaMessage(BaseModel):
|
|
role: Optional[str] = None
|
|
content: Optional[str] = None
|
|
|
|
|
|
class ChatCompletionResponseStreamChoice(BaseModel):
|
|
index: int
|
|
delta: DeltaMessage
|
|
logprobs: Optional[LogProbs] = None
|
|
finish_reason: Optional[Literal["stop", "length"]] = None
|
|
stop_reason: Union[None, int, str] = None
|
|
|
|
|
|
class ChatCompletionStreamResponse(BaseModel):
|
|
id: str = Field(default_factory=lambda: f"chatcmpl-{random_uuid()}")
|
|
object: str = "chat.completion.chunk"
|
|
created: int = Field(default_factory=lambda: int(time.time()))
|
|
model: str
|
|
choices: List[ChatCompletionResponseStreamChoice]
|
|
usage: Optional[UsageInfo] = Field(default=None)
|