64 lines
2.2 KiB
Python

import pytest
import torch.nn.functional as F
from ....conftest import IMAGE_ASSETS
from ..utils import check_embeddings_close
HF_IMAGE_PROMPTS = IMAGE_ASSETS.prompts({
"stop_sign":
"<|image_1|> Select the portion of the image that isolates the object of the given label: The label of the object is stop sign", # noqa: E501
"cherry_blossom":
"<|image_1|> Represent the given image with the following question: What is in the image", # noqa: E501
})
MODELS = ["TIGER-Lab/VLM2Vec-Full"]
@pytest.mark.parametrize("model", MODELS)
@pytest.mark.parametrize("dtype", ["half"])
def test_models(
hf_runner,
vllm_runner,
example_prompts,
model: str,
dtype: str,
) -> None:
# NOTE: take care of the order. run vLLM first, and then run HF.
# vLLM needs a fresh new process without cuda initialization.
# if we run HF first, the cuda initialization will be done and it
# will hurt multiprocessing backend with fork method (the default method).
with vllm_runner(model,
task="embedding",
max_model_len=4096,
max_num_seqs=2,
dtype=dtype,
enforce_eager=True) as vllm_model:
vllm_outputs = vllm_model.encode(example_prompts)
with hf_runner(model, dtype=dtype) as hf_model:
all_inputs = hf_model.get_inputs(example_prompts)
all_outputs = []
for inputs in all_inputs:
# Based on: https://github.com/TIGER-AI-Lab/VLM2Vec/blob/db3b951bccabba220c1f53ab46a734e50dd2fc08/src/model.py
outputs = hf_model.model(
**hf_model.wrap_device(inputs,
device=hf_model.model.device.type),
return_dict=True,
output_hidden_states=True,
)
last_hidden_state = outputs.hidden_states[-1][0]
reps = last_hidden_state[inputs.attention_mask[0].sum() - 1]
pooled_output = F.normalize(reps, p=2, dim=-1)
all_outputs.append(pooled_output.tolist())
hf_outputs = all_outputs
check_embeddings_close(
embeddings_0_lst=hf_outputs,
embeddings_1_lst=vllm_outputs,
name_0="hf",
name_1="vllm",
)