vllm/tests/lora/test_worker.py

71 lines
2.4 KiB
Python

import os
import random
import tempfile
from unittest.mock import patch
from vllm.config import (CacheConfig, DeviceConfig, LoadConfig, LoRAConfig,
ModelConfig, ParallelConfig, SchedulerConfig)
from vllm.lora.models import LoRAMapping
from vllm.lora.request import LoRARequest
from vllm.worker.worker import Worker
@patch.dict(os.environ, {"RANK": "0"})
def test_worker_apply_lora(sql_lora_files):
worker = Worker(
model_config=ModelConfig(
"meta-llama/Llama-2-7b-hf",
task="auto",
tokenizer="meta-llama/Llama-2-7b-hf",
tokenizer_mode="auto",
trust_remote_code=False,
seed=0,
dtype="float16",
revision=None,
),
load_config=LoadConfig(
download_dir=None,
load_format="dummy",
),
parallel_config=ParallelConfig(1, 1, False),
scheduler_config=SchedulerConfig("generate", 32, 32, 32),
device_config=DeviceConfig("cuda"),
cache_config=CacheConfig(block_size=16,
gpu_memory_utilization=1.,
swap_space=0,
cache_dtype="auto"),
local_rank=0,
rank=0,
lora_config=LoRAConfig(max_lora_rank=8, max_cpu_loras=32,
max_loras=32),
distributed_init_method=f"file://{tempfile.mkstemp()[1]}",
)
worker.init_device()
worker.load_model()
worker.model_runner.set_active_loras([], LoRAMapping([], []))
assert worker.list_loras() == set()
n_loras = 32
lora_requests = [
LoRARequest(str(i + 1), i + 1, sql_lora_files) for i in range(n_loras)
]
worker.model_runner.set_active_loras(lora_requests, LoRAMapping([], []))
assert worker.list_loras() == {
lora_request.lora_int_id
for lora_request in lora_requests
}
for i in range(32):
random.seed(i)
iter_lora_requests = random.choices(lora_requests,
k=random.randint(1, n_loras))
random.shuffle(iter_lora_requests)
iter_lora_requests = iter_lora_requests[:-random.randint(0, n_loras)]
worker.model_runner.set_active_loras(iter_lora_requests,
LoRAMapping([], []))
assert worker.list_loras().issuperset(
{lora_request.lora_int_id
for lora_request in iter_lora_requests})