vllm/cacheflow/models/input_metadata.py
2023-03-06 10:05:27 -08:00

43 lines
1.4 KiB
Python

from typing import List
import torch
class InputMetadata:
def __init__(
self,
seq_ids: List[int],
prompt_lens: List[int],
slot_mapping: torch.Tensor,
context_lens: torch.Tensor,
# FIXME: Rename
max_context_len: int,
block_tables: torch.Tensor,
) -> None:
self.seq_ids = seq_ids
self.prompt_lens = prompt_lens
self.slot_mapping = slot_mapping
self.context_lens = context_lens
self.max_context_len = max_context_len
self.block_tables = block_tables
self.num_prompts = len(prompt_lens)
self.num_generation_tokens = context_lens.shape[0]
self.num_valid_tokens = slot_mapping.shape[0]
if block_tables.numel() > 0:
self.max_num_blocks_per_seq = block_tables.shape[1]
else:
self.max_num_blocks_per_seq = 0
assert self.num_generation_tokens == block_tables.shape[0]
assert self.num_prompts + self.num_generation_tokens == len(seq_ids)
def __repr__(self) -> str:
return (f'InputMetadata('
f'seq_ids={self.seq_ids}, '
f'num_prompts={self.num_prompts}, '
f'num_generation_tokens={self.num_generation_tokens}, '
f'num_valid_tokens={self.num_valid_tokens}, '
f'max_num_blocks_per_seq={self.max_num_blocks_per_seq}, '
f'max_context_len={self.max_context_len})')