vllm/docs/source/getting_started/xpu-installation.rst
Yan Ma 04a3ae0aca
[Bugfix] Fix multi nodes TP+PP for XPU (#8884)
Signed-off-by: YiSheng5 <syhm@mail.ustc.edu.cn>
Signed-off-by: yan ma <yan.ma@intel.com>
Co-authored-by: YiSheng5 <syhm@mail.ustc.edu.cn>
2024-10-29 21:34:45 -07:00

81 lines
2.4 KiB
ReStructuredText

.. _installation_xpu:
Installation with XPU
========================
vLLM initially supports basic model inferencing and serving on Intel GPU platform.
Table of contents:
#. :ref:`Requirements <xpu_backend_requirements>`
#. :ref:`Quick start using Dockerfile <xpu_backend_quick_start_dockerfile>`
#. :ref:`Build from source <build_xpu_backend_from_source>`
.. _xpu_backend_requirements:
Requirements
------------
* OS: Linux
* Supported Hardware: Intel Data Center GPU, Intel ARC GPU
* OneAPI requirements: oneAPI 2024.2
.. _xpu_backend_quick_start_dockerfile:
Quick start using Dockerfile
----------------------------
.. code-block:: console
$ docker build -f Dockerfile.xpu -t vllm-xpu-env --shm-size=4g .
$ docker run -it \
--rm \
--network=host \
--device /dev/dri \
-v /dev/dri/by-path:/dev/dri/by-path \
vllm-xpu-env
.. _build_xpu_backend_from_source:
Build from source
-----------------
- First, install required driver and intel OneAPI 2024.2 or later.
- Second, install Python packages for vLLM XPU backend building:
.. code-block:: console
$ source /opt/intel/oneapi/setvars.sh
$ pip install --upgrade pip
$ pip install -v -r requirements-xpu.txt
- Finally, build and install vLLM XPU backend:
.. code-block:: console
$ VLLM_TARGET_DEVICE=xpu python setup.py install
.. note::
- FP16 is the default data type in the current XPU backend. The BF16 data
type will be supported in the future.
Distributed inference and serving
---------------------------------
XPU platform supports tensor-parallel inference/serving and also supports pipeline parallel as a beta feature for online serving. We requires Ray as the distributed runtime backend. For example, a reference execution likes following:
.. code-block:: console
$ python -m vllm.entrypoints.openai.api_server \
$ --model=facebook/opt-13b \
$ --dtype=bfloat16 \
$ --device=xpu \
$ --max_model_len=1024 \
$ --distributed-executor-backend=ray \
$ --pipeline-parallel-size=2 \
$ -tp=8
By default, a ray instance will be launched automatically if no existing one is detected in system, with ``num-gpus`` equals to ``parallel_config.world_size``. We recommend properly starting a ray cluster before execution, referring helper `script <https://github.com/vllm-project/vllm/tree/main/examples/run_cluster.sh>`_.