287 lines
8.9 KiB
Python
287 lines
8.9 KiB
Python
from pathlib import Path
|
|
from typing import Dict
|
|
|
|
import openai
|
|
import pytest
|
|
import pytest_asyncio
|
|
import ray
|
|
|
|
from vllm.multimodal.utils import ImageFetchAiohttp, encode_image_base64
|
|
|
|
from ..utils import ServerRunner
|
|
|
|
MODEL_NAME = "llava-hf/llava-1.5-7b-hf"
|
|
LLAVA_CHAT_TEMPLATE = (Path(__file__).parent.parent.parent /
|
|
"examples/template_llava.jinja")
|
|
assert LLAVA_CHAT_TEMPLATE.exists()
|
|
# Test different image extensions (JPG/PNG) and formats (gray/RGB/RGBA)
|
|
TEST_IMAGE_URLS = [
|
|
"https://upload.wikimedia.org/wikipedia/commons/thumb/d/dd/Gfp-wisconsin-madison-the-nature-boardwalk.jpg/2560px-Gfp-wisconsin-madison-the-nature-boardwalk.jpg",
|
|
"https://upload.wikimedia.org/wikipedia/commons/f/fa/Grayscale_8bits_palette_sample_image.png",
|
|
"https://upload.wikimedia.org/wikipedia/commons/thumb/9/91/Venn_diagram_rgb.svg/1280px-Venn_diagram_rgb.svg.png",
|
|
"https://upload.wikimedia.org/wikipedia/commons/0/0b/RGBA_comp.png",
|
|
]
|
|
|
|
pytestmark = pytest.mark.openai
|
|
|
|
|
|
@pytest.fixture(scope="module")
|
|
def server():
|
|
ray.init()
|
|
server_runner = ServerRunner.remote([
|
|
"--model",
|
|
MODEL_NAME,
|
|
"--dtype",
|
|
"bfloat16",
|
|
"--max-model-len",
|
|
"4096",
|
|
"--enforce-eager",
|
|
"--image-input-type",
|
|
"pixel_values",
|
|
"--image-token-id",
|
|
"32000",
|
|
"--image-input-shape",
|
|
"1,3,336,336",
|
|
"--image-feature-size",
|
|
"576",
|
|
"--chat-template",
|
|
str(LLAVA_CHAT_TEMPLATE),
|
|
])
|
|
ray.get(server_runner.ready.remote())
|
|
yield server_runner
|
|
ray.shutdown()
|
|
|
|
|
|
@pytest.fixture(scope="session")
|
|
def client():
|
|
client = openai.AsyncOpenAI(
|
|
base_url="http://localhost:8000/v1",
|
|
api_key="token-abc123",
|
|
)
|
|
yield client
|
|
|
|
|
|
@pytest_asyncio.fixture(scope="session")
|
|
async def base64_encoded_image() -> Dict[str, str]:
|
|
return {
|
|
image_url:
|
|
encode_image_base64(await ImageFetchAiohttp.fetch_image(image_url))
|
|
for image_url in TEST_IMAGE_URLS
|
|
}
|
|
|
|
|
|
@pytest.mark.asyncio
|
|
@pytest.mark.parametrize("model_name", [MODEL_NAME])
|
|
@pytest.mark.parametrize("image_url", TEST_IMAGE_URLS)
|
|
async def test_single_chat_session_image(server, client: openai.AsyncOpenAI,
|
|
model_name: str, image_url: str):
|
|
messages = [{
|
|
"role":
|
|
"user",
|
|
"content": [
|
|
{
|
|
"type": "image_url",
|
|
"image_url": {
|
|
"url": image_url
|
|
}
|
|
},
|
|
{
|
|
"type": "text",
|
|
"text": "What's in this image?"
|
|
},
|
|
],
|
|
}]
|
|
|
|
# test single completion
|
|
chat_completion = await client.chat.completions.create(model=model_name,
|
|
messages=messages,
|
|
max_tokens=10,
|
|
logprobs=True,
|
|
top_logprobs=5)
|
|
assert len(chat_completion.choices) == 1
|
|
|
|
choice = chat_completion.choices[0]
|
|
assert choice.finish_reason == "length"
|
|
assert chat_completion.usage == openai.types.CompletionUsage(
|
|
completion_tokens=10, prompt_tokens=596, total_tokens=606)
|
|
|
|
message = choice.message
|
|
message = chat_completion.choices[0].message
|
|
assert message.content is not None and len(message.content) >= 10
|
|
assert message.role == "assistant"
|
|
messages.append({"role": "assistant", "content": message.content})
|
|
|
|
# test multi-turn dialogue
|
|
messages.append({"role": "user", "content": "express your result in json"})
|
|
chat_completion = await client.chat.completions.create(
|
|
model=model_name,
|
|
messages=messages,
|
|
max_tokens=10,
|
|
)
|
|
message = chat_completion.choices[0].message
|
|
assert message.content is not None and len(message.content) >= 0
|
|
|
|
|
|
@pytest.mark.asyncio
|
|
@pytest.mark.parametrize("model_name", [MODEL_NAME])
|
|
@pytest.mark.parametrize("image_url", TEST_IMAGE_URLS)
|
|
async def test_single_chat_session_image_base64encoded(
|
|
server, client: openai.AsyncOpenAI, model_name: str, image_url: str,
|
|
base64_encoded_image: Dict[str, str]):
|
|
|
|
messages = [{
|
|
"role":
|
|
"user",
|
|
"content": [
|
|
{
|
|
"type": "image_url",
|
|
"image_url": {
|
|
"url":
|
|
f"data:image/jpeg;base64,{base64_encoded_image[image_url]}"
|
|
}
|
|
},
|
|
{
|
|
"type": "text",
|
|
"text": "What's in this image?"
|
|
},
|
|
],
|
|
}]
|
|
|
|
# test single completion
|
|
chat_completion = await client.chat.completions.create(model=model_name,
|
|
messages=messages,
|
|
max_tokens=10,
|
|
logprobs=True,
|
|
top_logprobs=5)
|
|
assert len(chat_completion.choices) == 1
|
|
|
|
choice = chat_completion.choices[0]
|
|
assert choice.finish_reason == "length"
|
|
assert chat_completion.usage == openai.types.CompletionUsage(
|
|
completion_tokens=10, prompt_tokens=596, total_tokens=606)
|
|
|
|
message = choice.message
|
|
message = chat_completion.choices[0].message
|
|
assert message.content is not None and len(message.content) >= 10
|
|
assert message.role == "assistant"
|
|
messages.append({"role": "assistant", "content": message.content})
|
|
|
|
# test multi-turn dialogue
|
|
messages.append({"role": "user", "content": "express your result in json"})
|
|
chat_completion = await client.chat.completions.create(
|
|
model=model_name,
|
|
messages=messages,
|
|
max_tokens=10,
|
|
)
|
|
message = chat_completion.choices[0].message
|
|
assert message.content is not None and len(message.content) >= 0
|
|
|
|
|
|
@pytest.mark.asyncio
|
|
@pytest.mark.parametrize("model_name", [MODEL_NAME])
|
|
@pytest.mark.parametrize("image_url", TEST_IMAGE_URLS)
|
|
async def test_chat_streaming_image(server, client: openai.AsyncOpenAI,
|
|
model_name: str, image_url: str):
|
|
messages = [{
|
|
"role":
|
|
"user",
|
|
"content": [
|
|
{
|
|
"type": "image_url",
|
|
"image_url": {
|
|
"url": image_url
|
|
}
|
|
},
|
|
{
|
|
"type": "text",
|
|
"text": "What's in this image?"
|
|
},
|
|
],
|
|
}]
|
|
|
|
# test single completion
|
|
chat_completion = await client.chat.completions.create(
|
|
model=model_name,
|
|
messages=messages,
|
|
max_tokens=10,
|
|
temperature=0.0,
|
|
)
|
|
output = chat_completion.choices[0].message.content
|
|
stop_reason = chat_completion.choices[0].finish_reason
|
|
|
|
# test streaming
|
|
stream = await client.chat.completions.create(
|
|
model=model_name,
|
|
messages=messages,
|
|
max_tokens=10,
|
|
temperature=0.0,
|
|
stream=True,
|
|
)
|
|
chunks = []
|
|
finish_reason_count = 0
|
|
async for chunk in stream:
|
|
delta = chunk.choices[0].delta
|
|
if delta.role:
|
|
assert delta.role == "assistant"
|
|
if delta.content:
|
|
chunks.append(delta.content)
|
|
if chunk.choices[0].finish_reason is not None:
|
|
finish_reason_count += 1
|
|
# finish reason should only return in last block
|
|
assert finish_reason_count == 1
|
|
assert chunk.choices[0].finish_reason == stop_reason
|
|
assert delta.content
|
|
assert "".join(chunks) == output
|
|
|
|
|
|
@pytest.mark.asyncio
|
|
@pytest.mark.parametrize("model_name", [MODEL_NAME])
|
|
@pytest.mark.parametrize("image_url", TEST_IMAGE_URLS)
|
|
async def test_multi_image_input(server, client: openai.AsyncOpenAI,
|
|
model_name: str, image_url: str):
|
|
|
|
messages = [{
|
|
"role":
|
|
"user",
|
|
"content": [
|
|
{
|
|
"type": "image_url",
|
|
"image_url": {
|
|
"url": image_url
|
|
}
|
|
},
|
|
{
|
|
"type": "image_url",
|
|
"image_url": {
|
|
"url": image_url
|
|
}
|
|
},
|
|
{
|
|
"type": "text",
|
|
"text": "What's in this image?"
|
|
},
|
|
],
|
|
}]
|
|
|
|
with pytest.raises(openai.BadRequestError): # test multi-image input
|
|
await client.chat.completions.create(
|
|
model=model_name,
|
|
messages=messages,
|
|
max_tokens=10,
|
|
temperature=0.0,
|
|
)
|
|
|
|
# the server should still work afterwards
|
|
completion = await client.completions.create(
|
|
model=model_name,
|
|
prompt=[0, 0, 0, 0, 0],
|
|
max_tokens=5,
|
|
temperature=0.0,
|
|
)
|
|
completion = completion.choices[0].text
|
|
assert completion is not None and len(completion) >= 0
|
|
|
|
|
|
if __name__ == "__main__":
|
|
pytest.main([__file__])
|