vllm/tests/v1/engine/test_output_processor.py
afeldman-nm 02fcaa3d0a
[V1] Detokenizer: Respect Stop Tokens + not include_stop_str_in_output (#14624)
Signed-off-by: Andrew Feldman <afeldman@neuralmagic.com>
2025-03-13 19:07:34 +00:00

837 lines
36 KiB
Python

# SPDX-License-Identifier: Apache-2.0
import math
import time
from typing import Optional
import pytest
from tests.v1.engine.utils import (NUM_PROMPT_LOGPROBS_UNDER_TEST,
NUM_SAMPLE_LOGPROBS_UNDER_TEST,
STOP_STRINGS,
DummyOutputProcessorTestVectors,
MockEngineCore)
from vllm.sampling_params import RequestOutputKind, SamplingParams
from vllm.sequence import PromptLogprobs, SampleLogprobs
from vllm.transformers_utils.tokenizer import AnyTokenizer
from vllm.v1.engine import EngineCoreRequest
from vllm.v1.engine.output_processor import OutputProcessor
from vllm.v1.metrics.stats import IterationStats
def _ref_convert_id_to_token(
tokenizer: AnyTokenizer,
token_id: int,
) -> str:
"""Reference impl of logprobs detokenization.
Args:
tokenizer: tokenizer used by the model under test
token_id: convert this token id
Returns:
String representation of input token id
"""
return tokenizer.convert_ids_to_tokens(token_id) or ""
@pytest.mark.parametrize(
"request_output_kind",
[RequestOutputKind.DELTA, RequestOutputKind.FINAL_ONLY])
def test_incremental_detokenization(request_output_kind: RequestOutputKind,
dummy_test_vectors):
output_processor = OutputProcessor(dummy_test_vectors.tokenizer_group,
log_stats=False)
engine_core = MockEngineCore(
tokens_list=dummy_test_vectors.generation_tokens)
# Make N requests.
requests = [
EngineCoreRequest(request_id=f"request-{idx}",
prompt=prompt,
prompt_token_ids=prompt_tokens,
arrival_time=0,
mm_inputs=None,
mm_hashes=None,
mm_placeholders=None,
eos_token_id=None,
lora_request=None,
sampling_params=SamplingParams(
skip_special_tokens=False,
spaces_between_special_tokens=False,
output_kind=request_output_kind,
stop=[],
include_stop_str_in_output=False,
)) for idx, (prompt, prompt_tokens) in enumerate(
zip(dummy_test_vectors.prompt_strings,
dummy_test_vectors.prompt_tokens))
]
# Add requests to the detokenizer.
for request in requests:
output_processor.add_request(request)
gen_strings = {}
gen_tokens = {}
while True:
# Mock output from the EngineCore.
outputs = engine_core.get_outputs()
if len(outputs) == 0:
break
# Step the Detokenizer.
processed_outputs = output_processor.process_outputs(outputs)
request_outputs = processed_outputs.request_outputs
requests_to_abort = processed_outputs.reqs_to_abort
assert len(requests_to_abort) == 0
# Update tracking.
for request_output in request_outputs:
request_id = request_output.request_id
new_text = request_output.outputs[0].text
new_tokens = request_output.outputs[0].token_ids
if request_id not in gen_strings:
gen_strings[request_id] = new_text
gen_tokens[request_id] = new_tokens
else:
gen_strings[request_id] += new_text
gen_tokens[request_id].extend(new_tokens)
# Confirmed tracked values matches what we expected.
for idx, (ref_gen_str, ref_gen_toks) in enumerate(
zip(dummy_test_vectors.generation_strings,
dummy_test_vectors.generation_tokens)):
gen_str = gen_strings[f"request-{idx}"]
gen_toks = gen_tokens[f"request-{idx}"]
assert gen_str == ref_gen_str, f"{gen_str=}, {ref_gen_str=}"
assert gen_toks == ref_gen_toks, f"{gen_toks=}, {ref_gen_toks=}"
assert output_processor.get_num_unfinished_requests() == 0
assert not output_processor.has_unfinished_requests()
def _validate_logprobs(
gen_tokens: dict[str, list[int]],
gen_logprobs: dict[str, Optional[SampleLogprobs]],
gen_prompt_logprobs: dict[str, Optional[PromptLogprobs]],
gen_cumulative_logprob: dict[str, float],
dtv: DummyOutputProcessorTestVectors,
request_id_list: list[str],
num_sample_logprobs: Optional[int],
num_prompt_logprobs: Optional[int],
) -> None:
for req_idx, req_id in enumerate(request_id_list):
new_tokens = gen_tokens[req_id]
logprobs = gen_logprobs[req_id]
prompt_logprobs = gen_prompt_logprobs[req_id]
cumulative_logprob = gen_cumulative_logprob[req_id]
prompt_token_ids = dtv.prompt_tokens[req_idx]
ref_logprobs = dtv.generation_logprobs[req_idx]
ref_prompt_logprobs = dtv.prompt_logprobs[req_idx]
if num_sample_logprobs is not None:
# Validate sample logprobs
assert logprobs is not None, (f"Request {req_id} requires sample"
" logprobs but sample logprobs are"
" None.")
# Require num sampled tokens to match num
# sampled logprobs - especially important
# to check since the detokenizer can cause
# a request to finish early due to a stop
# string being hit
num_new_tokens = len(new_tokens)
len_sample_logprobs = len(logprobs)
assert num_new_tokens == len_sample_logprobs, (
f"Request {req_id} has {num_new_tokens}"
" completion tokens but has"
f" {len_sample_logprobs} sample logprobs.")
ref_cumulative_logprob = 0.0
for idx, (sampled_token,
pos_logprob_dict) in enumerate(zip(new_tokens,
logprobs)):
# Break out the reference log probability value &
# logprob token id tensors associated with this
# position in the completion. Also break out the
# sampled token ranks
(ref_pos_logprob_toks, ref_pos_logprob_vals,
ref_sampled_token_rank) = ref_logprobs[idx]
# For each position in the completion sequence,
# ensure the actual sampled token is among the
# logprobs
assert sampled_token in pos_logprob_dict, (
f"Sampled token {sampled_token} not"
f" present in logprob at index {idx}")
# Validate number of sample logprobs
num_lp_toks = len(pos_logprob_dict)
assert (num_lp_toks == num_sample_logprobs
or num_lp_toks == num_sample_logprobs +
1), ("Valid numbers of sample logprobs are"
f" {num_sample_logprobs} or"
f" {num_sample_logprobs+1} but"
f" {num_lp_toks} logprobs found at"
f" position {idx}. Logprobs dict:"
f" {pos_logprob_dict}")
# Validate sampled token logprob rank
smp_lp = pos_logprob_dict[sampled_token]
smp_lp_rank = smp_lp.rank
assert (ref_sampled_token_rank == smp_lp_rank), (
"Sampled token logprob rank"
f" {smp_lp_rank} does not match"
" correct value"
f" {ref_sampled_token_rank}"
f" in Logprob {smp_lp}")
# Validate that the logprob processor yields
# the correct log probabilities and valid
# rankings
rank_one_appears = False
for jdx in range(1, len(ref_pos_logprob_toks)):
# Iterate over the (logprob val,logprob tok id)
# pairs expected by the test fixture at this
# position in the completion.
ref_lp_val = ref_pos_logprob_vals[jdx]
ref_tok_id = ref_pos_logprob_toks[jdx]
assert ref_tok_id in pos_logprob_dict, (
f"Expected token {ref_tok_id} to be"
f" in logprob dict but it is not.")
# Extract actually-generated logprob
# info
lp = pos_logprob_dict[ref_tok_id]
lp_val = lp.logprob
lp_rank = lp.rank
# A "top" (rank 1) logprob must be
# present
rank_one_appears = (True
if lp_rank == 1 else rank_one_appears)
# Rank must be >= 1
assert lp_rank >= 1, (f"Logprob {lp} has invalid"
f" rank {lp_rank} < 1."
f" Logprob dict: {pos_logprob_dict}")
# Validate log probability
assert math.isclose(lp_val, ref_lp_val), (
f"Token id {ref_tok_id} appears in logprobs dict"
f" at position {idx} in completion with log"
f" probability {lp_val} but {ref_lp_val} was"
f" expected. Logprob: {lp}")
assert rank_one_appears, (f"No Logprob has rank 1"
" in the following Logprob"
f" dict: {pos_logprob_dict}")
# Validate logprobs detokenization
for lp_tok in pos_logprob_dict:
# Confirm that sample logprob decoded token matches
# the logprob token id at this sequence position
decoded_token = pos_logprob_dict[lp_tok].decoded_token
ref_decoded_token = _ref_convert_id_to_token(
dtv.tokenizer, lp_tok)
assert decoded_token == ref_decoded_token, (
f"Sampled logprob token id {lp_tok} decodes to"
f" {ref_decoded_token} but Logprob decoded"
f" token is {decoded_token} instead"
f" (at position {idx})")
ref_cumulative_logprob += pos_logprob_dict[
sampled_token].logprob
# Assert that cumulative logprobs are correct
assert math.isclose(cumulative_logprob, ref_cumulative_logprob)
else:
# Sample logprobs disabled for this request
assert logprobs is None
assert cumulative_logprob is None
if num_prompt_logprobs is not None:
# Validate prompt logprobs
assert prompt_logprobs is not None, (
f"Request {req_id} requires prompt"
" logprobs but prompt logprobs are"
" None.")
# Require num prompt tokens to match num
# prompt logprobs
num_prompt_tokens = len(prompt_token_ids)
len_prompt_logprobs = len(prompt_logprobs)
assert num_prompt_tokens == len_prompt_logprobs, (
f"Request {req_id} has {num_prompt_tokens}"
" prompt tokens but has"
f" {len_prompt_logprobs} prompt logprobs.")
# First prompt logprob is None
first_plp_dict = prompt_logprobs[0]
assert first_plp_dict is None, (
f"Request {req_id} first prompt logprob"
f" should be None but has following value"
f" instead: {first_plp_dict}")
# Break out the reference prompt log prob value &
# logprob token id matrices for the whole prompt.
# Also break out the prompt token rank vector
(ref_prompt_logprob_toks, ref_prompt_logprob_vals,
ref_prompt_token_ranks) = ref_prompt_logprobs
for idx, (prompt_token, pos_logprob_dict) in enumerate(
zip(prompt_token_ids[1:], prompt_logprobs[1:])):
# Break out the reference prompt log prob value
# vector, prompt logprob token id vector, and
# prompt token rank at the current position.
(ref_pos_prompt_logprob_toks, ref_pos_prompt_logprob_vals,
ref_pos_prompt_token_rank) = (ref_prompt_logprob_toks[idx, :],
ref_prompt_logprob_vals[idx, :],
ref_prompt_token_ranks[idx])
# For each position in the prompt sequence,
# ensure the actual prompt token is among the
# logprobs
assert prompt_token in pos_logprob_dict, (
f"Prompt token {prompt_token} not"
f" present in logprob at index {idx}")
# Validate number of prompt logprobs
num_plp_toks = len(pos_logprob_dict)
assert (num_plp_toks == num_prompt_logprobs
or num_plp_toks == num_prompt_logprobs +
1), ("Valid numbers of prompt logprobs are"
f" {num_prompt_logprobs} or"
f" {num_prompt_logprobs+1} but"
f" {num_plp_toks} logprobs found at"
f" position {idx}. Logprobs dict:"
f" {pos_logprob_dict}")
# Validate prompt token logprob rank
prmpt_tok_lp = pos_logprob_dict[prompt_token]
prmpt_tok_lp_rank = prmpt_tok_lp.rank
ref_prmpt_tok_lp_rank = ref_pos_prompt_token_rank
assert (ref_prmpt_tok_lp_rank == prmpt_tok_lp_rank), (
"Prompt token logprob rank"
f" {prmpt_tok_lp_rank} does not match"
" correct value"
f" {ref_prmpt_tok_lp_rank}"
f" in Logprob {prmpt_tok_lp}")
# Validate that the logprob processor yields
# the correct prompt log probs and valid
# rankings
rank_one_appears = False
for jdx in range(1, len(ref_pos_prompt_logprob_toks)):
# Iterate over the (logprob val,logprob tok id)
# pairs expected by the test fixture at this
# position in the completion.
ref_plp_val = float(ref_pos_prompt_logprob_vals[jdx])
ref_tok_id = int(ref_pos_prompt_logprob_toks[jdx])
assert ref_tok_id in pos_logprob_dict, (
f"Expected token {ref_tok_id} to be"
f" in logprob dict but it is not.")
# Extract actually-generated logprob
# info
plp = pos_logprob_dict[ref_tok_id]
plp_val = plp.logprob
plp_rank = plp.rank
# A "top" (rank 1) logprob must be
# present
rank_one_appears = (True
if plp_rank == 1 else rank_one_appears)
# Rank must be >= 1
assert plp_rank >= 1, (
f"Logprob {plp} has invalid"
f" rank {plp_rank} < 1."
f" Logprob dict: {pos_logprob_dict}")
# Validate log probability
assert math.isclose(plp_val, ref_plp_val), (
f"Token id {ref_tok_id} appears in logprobs dict"
f" at position {idx} in completion with log"
f" probability {plp_val} but {ref_plp_val} was"
f" expected. Logprob: {plp}")
assert rank_one_appears, (f"No Logprob has rank 1"
" in the following Logprob"
f" dict: {pos_logprob_dict}")
# Validate prompt logprob detokenization
for plp_tok in pos_logprob_dict:
# Confirm that prompt logprob decoded token matches
# the logprob token id at this sequence position
decoded_token = pos_logprob_dict[plp_tok].decoded_token
ref_decoded_token = _ref_convert_id_to_token(
dtv.tokenizer, plp_tok)
assert decoded_token == ref_decoded_token, (
f"Prompt logprob token id {plp_tok} decodes to"
f" {ref_decoded_token} but Logprob decoded"
f" token is {decoded_token} instead"
f" (at position {idx})")
else:
# Prompt logprobs disabled for this request
assert prompt_logprobs is None
@pytest.mark.parametrize(
"request_output_kind",
[RequestOutputKind.DELTA, RequestOutputKind.FINAL_ONLY])
@pytest.mark.parametrize("num_sample_logprobs",
[None, NUM_SAMPLE_LOGPROBS_UNDER_TEST])
@pytest.mark.parametrize("num_prompt_logprobs",
[None, NUM_PROMPT_LOGPROBS_UNDER_TEST])
def test_logprobs_processor(request_output_kind: RequestOutputKind,
num_sample_logprobs: Optional[int],
num_prompt_logprobs: Optional[int],
dummy_test_vectors):
output_processor = OutputProcessor(dummy_test_vectors.tokenizer_group,
log_stats=False)
engine_core = MockEngineCore(
tokens_list=dummy_test_vectors.generation_tokens,
generated_logprobs_raw=None if num_sample_logprobs is None else
dummy_test_vectors.generation_logprobs,
prompt_logprobs_raw=None
if num_prompt_logprobs is None else dummy_test_vectors.prompt_logprobs)
# Make N requests.
request_id_list = [
f"request-{idx}"
for idx in range(len(dummy_test_vectors.prompt_strings))
]
requests = [
EngineCoreRequest(request_id=request_id_list[idx],
prompt=prompt,
prompt_token_ids=prompt_tokens,
arrival_time=0,
mm_inputs=None,
mm_hashes=None,
mm_placeholders=None,
eos_token_id=None,
lora_request=None,
sampling_params=SamplingParams(
skip_special_tokens=False,
spaces_between_special_tokens=False,
output_kind=request_output_kind,
stop=[],
include_stop_str_in_output=False,
logprobs=num_sample_logprobs,
prompt_logprobs=num_prompt_logprobs,
)) for idx, (prompt, prompt_tokens) in enumerate(
zip(dummy_test_vectors.prompt_strings,
dummy_test_vectors.prompt_tokens))
]
# Add requests to the detokenizer.
for request in requests:
output_processor.add_request(request)
gen_tokens = {}
gen_logprobs = {}
gen_prompt_logprobs = {}
gen_cumulative_logprobs = {}
while True:
# Mock output from the EngineCore.
outputs = engine_core.get_outputs()
if len(outputs) == 0:
break
# Step the logprobs processor.
processed_outputs = output_processor.process_outputs(outputs)
request_outputs = processed_outputs.request_outputs
requests_to_abort = processed_outputs.reqs_to_abort
assert len(requests_to_abort) == 0
# Update tracking.
for request_output in request_outputs:
request_id = request_output.request_id
new_tokens = request_output.outputs[0].token_ids
prompt_logprobs = request_output.prompt_logprobs
logprobs = request_output.outputs[0].logprobs
gen_cumulative_logprobs[request_id] = request_output.outputs[
0].cumulative_logprob
if request_id not in gen_logprobs:
# Start tracking sample and prompt logprobs for this request
gen_tokens[request_id] = new_tokens
gen_logprobs[request_id] = logprobs
gen_prompt_logprobs[request_id] = prompt_logprobs
else:
# Extend logprobs tracker
gen_tokens[request_id].extend(new_tokens)
lp = gen_logprobs[request_id]
plp = gen_prompt_logprobs[request_id]
if lp:
lp.extend(logprobs)
if plp:
plp.extend(prompt_logprobs)
# Confirmed tracked logprobs match what we expect
_validate_logprobs(gen_tokens, gen_logprobs, gen_prompt_logprobs,
gen_cumulative_logprobs, dummy_test_vectors,
request_id_list, num_sample_logprobs,
num_prompt_logprobs)
assert output_processor.get_num_unfinished_requests() == 0
assert not output_processor.has_unfinished_requests()
@pytest.mark.parametrize(
"include_stop_str_in_output,stop_token_type,ignore_eos,num_sample_logprobs",
[(False, "stop_token_ids", False, None),
(True, "stop_token_ids", False, None),
(False, "stop_token_ids", False, NUM_SAMPLE_LOGPROBS_UNDER_TEST),
(True, "stop_token_ids", False, NUM_SAMPLE_LOGPROBS_UNDER_TEST),
(False, "eos_token_id", False, None), (True, "eos_token_id", False, None),
(False, "eos_token_id", True, None)])
def test_stop_token(include_stop_str_in_output: bool,
num_sample_logprobs: Optional[int], stop_token_type: str,
ignore_eos: bool, dummy_test_vectors):
"""Test output processor EOS/stop token handling.
Send mock engine core request to mock engine core and pass core outputs
to output processor. Validate output processor tokens, text and
(if enabled) sample logprobs. Batch-size one.
The test emulates a scenario where a model outputs text tokens followed
by two identical control tokens:
<token><token>...<token><control><control>
If EOS is under test, the control tokens are EOS; otherwise, they are
some other token id.
Test behavior:
* If EOS is under test and `ignore_eos=True`, the detokenized string
should be <token><token>...<token><control><control> and the finish
reason should be "length" (i.e. no stop occurs)
* else, if `include_stop_str_in_output==True`, the detokenized
string should be <token><token>...<token><control> and the finish
reason should be "stop" (i.e. first control token causes stop
and is represented in output text)
* else, the detokenized string should be
<token><token>...<token> and the finish reason should be "stop"
(i.e. first control token causes stop but is not represented
in output text.)
Note: some test details are tuned for meta-llama/Llama-3.2-1B,
another model should work only if the test is modified.
Args:
include_stop_str_in_output: stop token str appears in output text
num_sample_logprobs: number of sample logprobs (`None` for no logprobs)
stop_token_type: "eos_token_id" for EOS, "stop_token_ids" for stop token
ignore_eos: if True, EOS stops are disabled
dummy_test_vectors: dummy engine core outputs and other data structures
"""
model_id = dummy_test_vectors.tokenizer.name_or_path
if model_id != 'meta-llama/Llama-3.2-1B':
raise AssertionError("Test requires meta-llama/Llama-3.2-1B but "
f"{model_id} is in use.")
do_logprobs = num_sample_logprobs is not None
# EOS under test; if False, stop_token_ids under test
is_eos_test = stop_token_type == "eos_token_id"
# EOS under test but ignore_eos enabled
is_eos_ignore_test = is_eos_test and ignore_eos
eos_token_id = (
dummy_test_vectors.tokenizer.eos_token_id if is_eos_test else None
) # '<|end_of_text|>'
stop_token_ids = [128009] if not is_eos_test else None # '<|eot_id|>'
output_processor = OutputProcessor(dummy_test_vectors.tokenizer_group,
log_stats=False)
# Dummy engine core outputs, with control tokens suffixed to test stops
suffix_token = ([eos_token_id] if is_eos_test else stop_token_ids)
assert suffix_token is not None and isinstance(suffix_token[0], int)
generation_string = dummy_test_vectors.generation_strings[0]
generation_tokens = (dummy_test_vectors.generation_tokens[0] +
2 * suffix_token)
if do_logprobs:
generation_logprobs = (
dummy_test_vectors.generation_logprobs[0] +
2 * [dummy_test_vectors.generation_logprobs[0][-1]])
prompt_string = dummy_test_vectors.prompt_strings[0]
prompt_tokens = dummy_test_vectors.prompt_tokens[0]
engine_core = MockEngineCore(
tokens_list=[generation_tokens],
generated_logprobs_raw=[generation_logprobs] if do_logprobs else None,
prompt_logprobs_raw=None,
eos_token_id=eos_token_id,
stop_token_ids=stop_token_ids,
ignore_eos=ignore_eos)
# Make request.
request_id = "request-0"
request = EngineCoreRequest(
request_id=request_id,
prompt=prompt_string,
prompt_token_ids=prompt_tokens,
arrival_time=0,
mm_inputs=None,
mm_hashes=None,
mm_placeholders=None,
eos_token_id=eos_token_id,
lora_request=None,
sampling_params=SamplingParams(
skip_special_tokens=False,
spaces_between_special_tokens=False,
output_kind=RequestOutputKind.DELTA,
stop=[],
stop_token_ids=stop_token_ids,
include_stop_str_in_output=include_stop_str_in_output,
logprobs=num_sample_logprobs,
prompt_logprobs=None,
ignore_eos=ignore_eos,
))
# Add request to the detokenizer.
output_processor.add_request(request)
# Loop over engine core steps; run output processor
gen_string = ""
gen_tokens = []
gen_logprobs = []
while True:
# Mock output from the EngineCore.
outputs = engine_core.get_outputs()
if len(outputs) == 0:
break
# Step the Detokenizer.
processed_outputs = output_processor.process_outputs(outputs)
request_outputs = processed_outputs.request_outputs
assert len(request_outputs) == 1
# Stop token does not rely on abort
assert not processed_outputs.reqs_to_abort
# Update tracking.
request_output = request_outputs[0]
if request_output.finished:
finish_reason = ("length" if is_eos_ignore_test else "stop")
assert request_output.outputs[0].finish_reason == finish_reason
gen_string += request_output.outputs[0].text
gen_tokens.extend(request_output.outputs[0].token_ids)
if do_logprobs:
gen_logprobs.extend(request_output.outputs[0].logprobs)
# Validate generated text
control_token = '<|end_of_text|>' if is_eos_test else '<|eot_id|>'
if is_eos_ignore_test:
# Length-based stop; expect full string
ref_str = generation_string + 2 * control_token
elif include_stop_str_in_output:
# Stop token triggered; include in output
ref_str = generation_string + control_token
else:
# Stop token triggered but not in output
ref_str = generation_string
assert gen_string == ref_str, (f"{gen_string=}, {ref_str=}")
if do_logprobs:
# Validate number of sample logprobs
num_tokens = len(gen_tokens)
num_logprobs = len(gen_logprobs)
assert num_tokens == num_logprobs, (
f"Token count ({num_tokens}) != logprobs count ({num_logprobs})")
# Check requests are finished
assert output_processor.get_num_unfinished_requests() == 0
assert not output_processor.has_unfinished_requests()
@pytest.mark.parametrize("include_stop_str_in_output", [True, False])
@pytest.mark.parametrize("num_sample_logprobs",
[None, NUM_SAMPLE_LOGPROBS_UNDER_TEST])
def test_stop_string(include_stop_str_in_output: bool,
num_sample_logprobs: Optional[int], dummy_test_vectors):
output_processor = OutputProcessor(dummy_test_vectors.tokenizer_group,
log_stats=False)
engine_core = MockEngineCore(
tokens_list=dummy_test_vectors.generation_tokens,
generated_logprobs_raw=dummy_test_vectors.generation_logprobs
if num_sample_logprobs else None,
prompt_logprobs_raw=None)
# Make N requests.
request_id_list = [
f"request-{idx}"
for idx in range(len(dummy_test_vectors.prompt_strings))
]
requests = [
EngineCoreRequest(
request_id=request_id_list[idx],
prompt=prompt,
prompt_token_ids=prompt_tokens,
arrival_time=0,
mm_inputs=None,
mm_hashes=None,
mm_placeholders=None,
eos_token_id=None,
lora_request=None,
sampling_params=SamplingParams(
skip_special_tokens=False,
spaces_between_special_tokens=False,
output_kind=RequestOutputKind.DELTA,
stop=STOP_STRINGS,
include_stop_str_in_output=include_stop_str_in_output,
logprobs=num_sample_logprobs,
prompt_logprobs=None,
)) for idx, (prompt, prompt_tokens) in enumerate(
zip(dummy_test_vectors.prompt_strings,
dummy_test_vectors.prompt_tokens))
]
# Add requests to the detokenizer.
for request in requests:
output_processor.add_request(request)
gen_strings = {}
gen_tokens = {}
gen_logprobs = {}
gen_prompt_logprobs = {}
gen_cumulative_logprobs = {}
aborted = []
while True:
# Mock output from the EngineCore.
outputs = engine_core.get_outputs()
if len(outputs) == 0:
break
# Step the Detokenizer.
processed_outputs = output_processor.process_outputs(outputs)
request_outputs = processed_outputs.request_outputs
requests_to_abort = processed_outputs.reqs_to_abort
for request_output in request_outputs:
# If aborted, we should not get a request output.
assert request_output.request_id not in aborted
aborted.extend(requests_to_abort)
# Update tracking.
for request_output in request_outputs:
if request_output.finished:
assert request_output.outputs[0].finish_reason == "stop"
request_id = request_output.request_id
new_text = request_output.outputs[0].text
new_tokens = request_output.outputs[0].token_ids
prompt_logprobs = request_output.prompt_logprobs
logprobs = request_output.outputs[0].logprobs
gen_cumulative_logprobs[request_id] = request_output.outputs[
0].cumulative_logprob
if request_id not in gen_strings:
gen_strings[request_id] = new_text
gen_tokens[request_id] = new_tokens
gen_logprobs[request_id] = logprobs
gen_prompt_logprobs[request_id] = prompt_logprobs
else:
gen_strings[request_id] += new_text
gen_tokens[request_id].extend(new_tokens)
lp = gen_logprobs[request_id]
plp = gen_prompt_logprobs[request_id]
if lp:
lp.extend(logprobs)
if plp:
plp.extend(prompt_logprobs)
# Confirmed tracked values matches what we expected.
for idx, (ref_gen_str, stop_str) in enumerate(
zip(dummy_test_vectors.generation_strings, STOP_STRINGS)):
# Request should be aborted.
request_id = f"request-{idx}"
assert request_id in aborted
# Collected values that were generated.
gen_str = gen_strings[request_id]
# Construct reference strings.
stop_str_idx = ref_gen_str.find(stop_str)
ref_str_exc_stop = ref_gen_str[:stop_str_idx]
ref_str_inc_stop = ref_gen_str[:stop_str_idx] + stop_str
if include_stop_str_in_output:
assert gen_str == ref_str_inc_stop, (
f"{gen_str=}, {ref_str_inc_stop=}")
else:
assert gen_str == ref_str_exc_stop, (
f"{gen_str=}, {ref_str_exc_stop=}")
# Confirmed tracked logprobs match what we expect
_validate_logprobs(gen_tokens, gen_logprobs, gen_prompt_logprobs,
gen_cumulative_logprobs, dummy_test_vectors,
request_id_list, num_sample_logprobs, None)
assert output_processor.get_num_unfinished_requests() == 0
assert not output_processor.has_unfinished_requests()
def test_iteration_stats(dummy_test_vectors):
output_processor = OutputProcessor(dummy_test_vectors.tokenizer_group,
log_stats=True)
engine_core = MockEngineCore(dummy_test_vectors.generation_tokens)
engine_core_timestamp = time.monotonic()
# Make N requests.
requests = [
EngineCoreRequest(
request_id=f"request-{idx}",
prompt=prompt,
prompt_token_ids=prompt_tokens,
arrival_time=0,
mm_inputs=None,
mm_hashes=None,
mm_placeholders=None,
eos_token_id=None,
lora_request=None,
sampling_params=SamplingParams(),
) for idx, (prompt, prompt_tokens) in enumerate(
zip(dummy_test_vectors.prompt_strings,
dummy_test_vectors.prompt_tokens))
]
# Add all requests except one to the OutputProcessor.
num_active = len(dummy_test_vectors.generation_tokens) - 1
for request in requests[:num_active]:
output_processor.add_request(request)
inactive_request = requests[num_active]
# First iteration has 2 prefills.
outputs = engine_core.get_outputs()[:num_active]
iteration_stats = IterationStats()
output_processor.process_outputs(outputs, engine_core_timestamp,
iteration_stats)
total_prompt_tokens = sum([
len(prompt_tokens)
for prompt_tokens in dummy_test_vectors.prompt_tokens[:num_active]
])
assert iteration_stats.num_prompt_tokens == total_prompt_tokens
assert iteration_stats.num_generation_tokens == num_active
# Just decodes in this step.
outputs = engine_core.get_outputs()[:num_active]
iteration_stats = IterationStats()
output_processor.process_outputs(outputs, engine_core_timestamp,
iteration_stats)
assert iteration_stats.num_prompt_tokens == 0
assert iteration_stats.num_generation_tokens == num_active
# Add a new request - prefill and 2 decodes in this step.
output_processor.add_request(inactive_request)
num_active += 1
outputs = engine_core.get_outputs()[:num_active]
iteration_stats = IterationStats()
output_processor.process_outputs(outputs, engine_core_timestamp,
iteration_stats)
total_prompt_tokens = len(dummy_test_vectors.prompt_tokens[num_active - 1])
assert iteration_stats.num_prompt_tokens == total_prompt_tokens
assert iteration_stats.num_generation_tokens == num_active
# Just decodes in this step.
outputs = engine_core.get_outputs()[:num_active]
iteration_stats = IterationStats()
output_processor.process_outputs(outputs, engine_core_timestamp,
iteration_stats)
assert iteration_stats.num_prompt_tokens == 0
assert iteration_stats.num_generation_tokens == num_active