107 lines
6.2 KiB
Python
107 lines
6.2 KiB
Python
import tempfile
|
|
from random import sample
|
|
from typing import List, Optional
|
|
|
|
import peft
|
|
import pytest
|
|
from transformers import AutoModelForCausalLM
|
|
|
|
import vllm
|
|
from vllm.lora.request import LoRARequest
|
|
|
|
from .conftest import cleanup
|
|
|
|
MODEL_PATH = "Felladrin/Llama-68M-Chat-v1"
|
|
PROMPTS = [
|
|
"[system] Given a target sentence construct the underlying meaning representation\nof the input sentence as a single function with attributes and attribute\nvalues. This function should describe the target string accurately and the\nfunction must be one of the following ['inform', 'request', 'give_opinion',\n'confirm', 'verify_attribute', 'suggest', 'request_explanation',\n'recommend', 'request_attribute'].\n\nThe attributes must be one of the following:\n['name', 'exp_release_date', 'release_year', 'developer', 'esrb', 'rating',\n'genres', 'player_perspective', 'has_multiplayer', 'platforms',\n'available_on_steam', 'has_linux_release', 'has_mac_release', 'specifier'] [/system] [user] Here is the target sentence:\nSpellForce 3 is a pretty bad game. The developer Grimlore Games is clearly a bunch of no-talent hacks, and 2017 was a terrible year for games anyway. [/user] [assistant]", # noqa: E501
|
|
"[system] Given a target sentence construct the underlying meaning representation\nof the input sentence as a single function with attributes and attribute\nvalues. This function should describe the target string accurately and the\nfunction must be one of the following ['inform', 'request', 'give_opinion',\n'confirm', 'verify_attribute', 'suggest', 'request_explanation',\n'recommend', 'request_attribute'].\n\nThe attributes must be one of the following:\n['name', 'exp_release_date', 'release_year', 'developer', 'esrb', 'rating',\n'genres', 'player_perspective', 'has_multiplayer', 'platforms',\n'available_on_steam', 'has_linux_release', 'has_mac_release', 'specifier'] [/system] [user] Here is the target sentence:\nI wanted to like Grimlore Games' 2017 entry, but in SpellForce 3 they just didn't get anything right. [/user] [assistant]", # noqa: E501
|
|
"[system] Given a target sentence construct the underlying meaning representation\nof the input sentence as a single function with attributes and attribute\nvalues. This function should describe the target string accurately and the\nfunction must be one of the following ['inform', 'request', 'give_opinion',\n'confirm', 'verify_attribute', 'suggest', 'request_explanation',\n'recommend', 'request_attribute'].\n\nThe attributes must be one of the following:\n['name', 'exp_release_date', 'release_year', 'developer', 'esrb', 'rating',\n'genres', 'player_perspective', 'has_multiplayer', 'platforms',\n'available_on_steam', 'has_linux_release', 'has_mac_release', 'specifier'] [/system] [user] Here is the target sentence:\nBioShock is a good role-playing, action-adventure, shooter that released for PlayStation, Xbox, and PC in 2007. It is available on Steam, and it has a Mac release but not a Linux release. [/user] [assistant]", # noqa: E501
|
|
]
|
|
|
|
|
|
def get_lora_model(model_id: str, target_modules: List[str], rank: int):
|
|
model = AutoModelForCausalLM.from_pretrained(model_id)
|
|
lora_config = peft.tuners.lora.LoraConfig(target_modules, rank)
|
|
lora_model = peft.PeftModel(model, lora_config)
|
|
return lora_model
|
|
|
|
|
|
def do_sample(llm,
|
|
lora_path: Optional[str] = None,
|
|
lora_id: Optional[int] = None,
|
|
logprobs: int = 0,
|
|
n_tokens: int = 256):
|
|
prompts = PROMPTS
|
|
sampling_params = vllm.SamplingParams(temperature=0,
|
|
max_tokens=n_tokens,
|
|
logprobs=logprobs,
|
|
stop=["[/assistant]"])
|
|
outputs = llm.generate(
|
|
prompts,
|
|
sampling_params,
|
|
lora_request=LoRARequest(str(lora_id), lora_id, lora_path)
|
|
if lora_id else None)
|
|
# Print the outputs.
|
|
generated_texts = []
|
|
generated_logprobs = []
|
|
for output in outputs:
|
|
prompt = output.prompt
|
|
generated_text = output.outputs[0].text
|
|
generated_texts.append(generated_text)
|
|
print(f"Prompt: {prompt!r}, Generated text: {generated_text!r}")
|
|
generated_logprobs.append([
|
|
list(logprob.keys()) for out in output.outputs
|
|
for logprob in out.logprobs
|
|
])
|
|
return generated_logprobs if logprobs else generated_texts
|
|
|
|
|
|
SUPPORTED_MODULES = [
|
|
"qkv_proj", "o_proj", "gate_up_proj", "down_proj", "embed_tokens",
|
|
"lm_head"
|
|
]
|
|
TARGET_MODULES_LIST = []
|
|
for length in range(2, 6):
|
|
TARGET_MODULES_LIST.extend(
|
|
[sample(SUPPORTED_MODULES, length) for _ in range(3)])
|
|
|
|
|
|
# Test the correctness when layer and rank are varied
|
|
# step 1: init a base model and serve with LoRA to get the reference results
|
|
# step 2: merge the same LoRA to the base model, serve the merged model
|
|
# step 3: compare the results from step 1 and step 2
|
|
@pytest.mark.parametrize("tp_size", [1])
|
|
@pytest.mark.parametrize("target_modules", TARGET_MODULES_LIST)
|
|
@pytest.mark.parametrize("rank", [8, 16, 32, 64])
|
|
def test_layer_variation_correctness(tp_size, target_modules, rank):
|
|
llm = vllm.LLM(MODEL_PATH,
|
|
enable_lora=True,
|
|
max_num_seqs=16,
|
|
max_loras=4,
|
|
tensor_parallel_size=tp_size,
|
|
worker_use_ray=True)
|
|
model = get_lora_model(MODEL_PATH, target_modules, rank)
|
|
with tempfile.TemporaryDirectory() as tmpdir:
|
|
model.save_pretrained(tmpdir)
|
|
merged_probs = do_sample(llm, tmpdir, 1, logprobs=5, n_tokens=32)
|
|
del llm
|
|
cleanup()
|
|
reference_id_sets = [set(prob[0]) for prob in merged_probs]
|
|
|
|
model = get_lora_model(MODEL_PATH, target_modules, rank)
|
|
with tempfile.TemporaryDirectory() as tmpdir:
|
|
merged_model = model.merge_and_unload()
|
|
merged_model.save_pretrained(tmpdir)
|
|
llm = vllm.LLM(tmpdir,
|
|
tokenizer=MODEL_PATH,
|
|
enable_lora=False,
|
|
max_num_seqs=16,
|
|
tensor_parallel_size=tp_size,
|
|
worker_use_ray=True)
|
|
probs = do_sample(llm, logprobs=5, n_tokens=32)
|
|
del llm
|
|
cleanup()
|
|
# verify the top-5 tokens are identical for each token
|
|
id_sets = [set(prob[0]) for prob in probs]
|
|
assert id_sets == reference_id_sets
|