1342 lines
52 KiB
Python
1342 lines
52 KiB
Python
"""Sequence and its related classes."""
|
|
import copy
|
|
import enum
|
|
from abc import ABC, abstractmethod
|
|
from array import array
|
|
from collections import defaultdict
|
|
from dataclasses import dataclass
|
|
from functools import cached_property, reduce
|
|
from typing import TYPE_CHECKING, Any, Callable, Dict, List, Mapping, Optional
|
|
from typing import Sequence as GenericSequence
|
|
from typing import Set, Tuple, Union, cast
|
|
|
|
import msgspec
|
|
import torch
|
|
|
|
from vllm.inputs.parse import is_valid_encoder_decoder_llm_inputs
|
|
from vllm.lora.request import LoRARequest
|
|
from vllm.pooling_params import PoolingParams
|
|
from vllm.prompt_adapter.request import PromptAdapterRequest
|
|
from vllm.sampling_params import SamplingParams
|
|
from vllm.spec_decode.metrics import SpecDecodeWorkerMetrics
|
|
|
|
if TYPE_CHECKING:
|
|
from vllm.inputs import LLMInputs
|
|
from vllm.multimodal.base import MultiModalDataDict
|
|
|
|
VLLM_TOKEN_ID_ARRAY_TYPE = "l"
|
|
|
|
VLLM_INVALID_TOKEN_ID = -1
|
|
|
|
|
|
# We use dataclass for now because it is used for
|
|
# openai server output, and msgspec is not serializable.
|
|
# TODO(sang): Fix it.
|
|
@dataclass
|
|
class Logprob:
|
|
"""Infos for supporting OpenAI compatible logprobs and token ranks.
|
|
|
|
Attributes:
|
|
logprob: The logprob of chosen token
|
|
rank: The vocab rank of chosen token (>=1)
|
|
decoded_token: The decoded chosen token index
|
|
"""
|
|
logprob: float
|
|
rank: Optional[int] = None
|
|
decoded_token: Optional[str] = None
|
|
|
|
|
|
# {token_id -> logprob} per each sequence group. None if the corresponding
|
|
# sequence group doesn't require prompt logprob.
|
|
PromptLogprobs = List[Optional[Dict[int, Logprob]]]
|
|
# {token_id -> logprob} for each sequence group.
|
|
SampleLogprobs = List[Dict[int, Logprob]]
|
|
|
|
|
|
class SequenceStatus(enum.IntEnum):
|
|
"""Status of a sequence."""
|
|
WAITING = 0
|
|
RUNNING = 1
|
|
SWAPPED = 2
|
|
# Note: anything after SWAPPED (2) will be considered
|
|
# as a finished status.
|
|
FINISHED_STOPPED = 3
|
|
FINISHED_LENGTH_CAPPED = 4
|
|
FINISHED_ABORTED = 5
|
|
FINISHED_IGNORED = 6
|
|
|
|
@staticmethod
|
|
def is_finished(status: "SequenceStatus") -> bool:
|
|
return status > SequenceStatus.SWAPPED
|
|
|
|
@staticmethod
|
|
def get_finished_reason(status: "SequenceStatus") -> Union[str, None]:
|
|
if status == SequenceStatus.FINISHED_STOPPED:
|
|
finish_reason = "stop"
|
|
elif status == SequenceStatus.FINISHED_LENGTH_CAPPED:
|
|
finish_reason = "length"
|
|
elif status == SequenceStatus.FINISHED_ABORTED:
|
|
finish_reason = "abort"
|
|
elif status == SequenceStatus.FINISHED_IGNORED:
|
|
# The ignored sequences are the sequences whose prompt lengths
|
|
# are longer than the model's length cap. Therefore, the stop
|
|
# reason should also be "length" as in OpenAI API.
|
|
finish_reason = "length"
|
|
else:
|
|
finish_reason = None
|
|
return finish_reason
|
|
|
|
|
|
class SequenceStage(enum.Enum):
|
|
PREFILL = enum.auto()
|
|
DECODE = enum.auto()
|
|
|
|
|
|
@dataclass
|
|
class RequestMetrics:
|
|
"""Metrics associated with a request.
|
|
|
|
Attributes:
|
|
arrival_time: The time when the request arrived.
|
|
first_scheduled_time: The time when the request was first scheduled.
|
|
first_token_time: The time when the first token was generated.
|
|
time_in_queue: The time the request spent in the queue.
|
|
finished_time: The time when the request was finished.
|
|
scheduler_time: The time spent in the scheduler when this request was
|
|
being considered by the scheduler.
|
|
model_forward_time: The time spent in the model forward pass when this
|
|
request was in the batch.
|
|
model_execute_time: The time spent in the model execute function. This
|
|
will include model forward, block/sync across
|
|
workers, cpu-gpu sync time and sampling time.
|
|
"""
|
|
arrival_time: float
|
|
last_token_time: float
|
|
first_scheduled_time: Optional[float]
|
|
first_token_time: Optional[float]
|
|
time_in_queue: Optional[float]
|
|
finished_time: Optional[float] = None
|
|
scheduler_time: Optional[float] = None
|
|
model_forward_time: Optional[float] = None
|
|
model_execute_time: Optional[float] = None
|
|
|
|
|
|
class SequenceDataDelta(
|
|
msgspec.Struct,
|
|
array_like=True, # type: ignore[call-arg]
|
|
omit_defaults=True): # type: ignore[call-arg]
|
|
"""Delta SequenceData to send to workers per step."""
|
|
# A new token to be appended to existing SequenceData.
|
|
new_output_token_ids: List[int]
|
|
# Overwriting existing `cumulative_logprob`
|
|
new_cumulative_logprob: float
|
|
# Overwriting existing `num_computed_tokens`.
|
|
new_num_computed_tokens: int
|
|
# Overwriting existing `stage`.
|
|
new_stage: SequenceStage
|
|
|
|
|
|
class SequenceData(msgspec.Struct,
|
|
omit_defaults=True): # type: ignore[call-arg]
|
|
"""Data associated with a sequence.
|
|
|
|
Args:
|
|
prompt_token_ids: The token IDs of the prompt.
|
|
output_token_ids: The token IDs of the output. Set to an empty list if
|
|
None.
|
|
|
|
Attributes:
|
|
prompt_token_ids: The token IDs of the prompt.
|
|
output_token_ids: The token IDs of the output.
|
|
cumulative_logprob: The cumulative log probability of the output.
|
|
"""
|
|
# NOTE: we cannot use Union[List, array] because msgspec cannot support
|
|
# union of 2 list types.
|
|
_prompt_token_ids: array
|
|
_output_token_ids: array = msgspec.field(
|
|
default_factory=lambda: array(VLLM_TOKEN_ID_ARRAY_TYPE, []))
|
|
|
|
### The below fields should not be passed as an argument ###
|
|
_cumulative_logprob: float = 0.0
|
|
_prompt_token_ids_tuple: Tuple[int,
|
|
...] = msgspec.field(default_factory=tuple)
|
|
# The number of tokens that are computed (that run against the model).
|
|
_num_computed_tokens: int = 0
|
|
_stage: SequenceStage = SequenceStage.PREFILL
|
|
_cached_all_token_ids: List[int] = msgspec.field(default_factory=list)
|
|
|
|
# It is used to get delta input. It is reset when `get_delta_and_reset`
|
|
# is called.
|
|
_new_appended_tokens: List[int] = msgspec.field(default_factory=list)
|
|
|
|
# It is used to compute mrope_position_ids.
|
|
_mrope_position_delta: Optional[int] = None
|
|
|
|
@staticmethod
|
|
def from_token_counts(*token_counts: Tuple[int, int]) -> "SequenceData":
|
|
if len(token_counts) == 0:
|
|
return SequenceData.from_seqs([])
|
|
|
|
arrs = [
|
|
array(VLLM_TOKEN_ID_ARRAY_TYPE, [token_id]) * count
|
|
for token_id, count in token_counts
|
|
]
|
|
|
|
return SequenceData(reduce(array.__add__, arrs))
|
|
|
|
@staticmethod
|
|
def from_seqs(
|
|
prompt_token_ids: GenericSequence[int],
|
|
output_token_ids: Optional[GenericSequence[int]] = None,
|
|
) -> "SequenceData":
|
|
prompt_token_ids_arr = array(VLLM_TOKEN_ID_ARRAY_TYPE,
|
|
prompt_token_ids)
|
|
|
|
if output_token_ids is None:
|
|
return SequenceData(prompt_token_ids_arr)
|
|
|
|
output_token_ids_arr = array(VLLM_TOKEN_ID_ARRAY_TYPE,
|
|
output_token_ids)
|
|
|
|
return SequenceData(prompt_token_ids_arr,
|
|
_output_token_ids=output_token_ids_arr)
|
|
|
|
def __post_init__(self) -> None:
|
|
assert self._prompt_token_ids.typecode == "l"
|
|
assert self._output_token_ids.typecode == "l"
|
|
self._prompt_token_ids_tuple: Tuple[int, ...] = tuple(
|
|
self._prompt_token_ids)
|
|
self._update_cached_all_tokens()
|
|
|
|
def _update_cached_all_tokens(self):
|
|
assert isinstance(self._prompt_token_ids, array)
|
|
assert isinstance(self._output_token_ids, array)
|
|
self._cached_all_token_ids: List[int] = list(self._prompt_token_ids +
|
|
self._output_token_ids)
|
|
|
|
@property
|
|
def cumulative_logprob(self) -> float:
|
|
return self._cumulative_logprob
|
|
|
|
@property
|
|
def prompt_token_ids(self) -> Tuple[int, ...]:
|
|
return self._prompt_token_ids_tuple
|
|
|
|
@prompt_token_ids.setter
|
|
def prompt_token_ids(self, new_prompt_token_ids) -> None:
|
|
raise NotImplementedError
|
|
|
|
@property
|
|
def prompt_token_ids_array(self) -> array:
|
|
"""Return the prompt token ids in array type.
|
|
|
|
Note that the array is in "I" type, and it is not compatible
|
|
with torch.long (2 bytes vs 4 bytes). So beware of the usage.
|
|
"""
|
|
return self._prompt_token_ids
|
|
|
|
@property
|
|
def output_token_ids(self) -> Tuple[int, ...]:
|
|
return tuple(self._output_token_ids)
|
|
|
|
@output_token_ids.setter
|
|
def output_token_ids(self, new_output_token_ids: List[int]) -> None:
|
|
self._output_token_ids = array(VLLM_TOKEN_ID_ARRAY_TYPE,
|
|
new_output_token_ids)
|
|
self._update_cached_all_tokens()
|
|
|
|
@property
|
|
def output_token_ids_array(self) -> array:
|
|
"""Return the prompt token ids in array type.
|
|
|
|
Note that the array is in "I" type, and it is not compatible
|
|
with torch.long (2 bytes vs 4 bytes). So beware of the usage.
|
|
"""
|
|
assert isinstance(self._output_token_ids, array)
|
|
return self._output_token_ids
|
|
|
|
@property
|
|
def mrope_position_delta(self) -> Optional[int]:
|
|
return self._mrope_position_delta
|
|
|
|
@mrope_position_delta.setter
|
|
def mrope_position_delta(self, new_mrope_position_delta):
|
|
self._mrope_position_delta = new_mrope_position_delta
|
|
|
|
def append_token_id(self, token_id: int, logprob: float) -> None:
|
|
self._output_token_ids.append(token_id)
|
|
self._new_appended_tokens.append(token_id)
|
|
self._cached_all_token_ids.append(token_id)
|
|
self._cumulative_logprob += logprob
|
|
|
|
def get_len(self) -> int:
|
|
return len(self._output_token_ids) + len(self._prompt_token_ids)
|
|
|
|
def get_prompt_len(self) -> int:
|
|
return len(self._prompt_token_ids)
|
|
|
|
def get_output_len(self) -> int:
|
|
return len(self._output_token_ids)
|
|
|
|
def get_token_ids(self) -> List[int]:
|
|
return self._cached_all_token_ids
|
|
|
|
def get_prefix_token_ids(
|
|
self, num_tokens: int
|
|
) -> Tuple[Tuple[int, ...], Optional[Tuple[int, ...]]]:
|
|
"""Get prefix tokens, and make the return value hashable"""
|
|
prompt_length = self.get_prompt_len()
|
|
if num_tokens > prompt_length:
|
|
return (self._prompt_token_ids_tuple,
|
|
tuple(self._output_token_ids[:num_tokens - prompt_length]))
|
|
else:
|
|
return (self._prompt_token_ids_tuple[:num_tokens], None)
|
|
|
|
def get_num_computed_tokens(self) -> int:
|
|
"""Return the number of prefill tokens that are already computed."""
|
|
return self._num_computed_tokens
|
|
|
|
def update_num_computed_tokens(self, num_new_computed_tokens: int):
|
|
"""Update number of tokens computed so far."""
|
|
self._num_computed_tokens += num_new_computed_tokens
|
|
assert self._num_computed_tokens <= self.get_len(), (
|
|
self._num_computed_tokens, self.get_len())
|
|
# If all tokens are computed, it means it is in decoding phase.
|
|
if self.get_num_uncomputed_tokens() == 0:
|
|
self._stage = SequenceStage.DECODE
|
|
|
|
def reset_state_for_recompute(self) -> None:
|
|
"""Reset the number of computed tokens from this sequence. It is
|
|
supposed to be called when a sequence needs to be started from
|
|
the beginning again (e.g., sequence is preempted).
|
|
"""
|
|
self._num_computed_tokens = 0
|
|
self._stage = SequenceStage.PREFILL
|
|
self._new_appended_tokens = []
|
|
|
|
def get_num_uncomputed_tokens(self) -> int:
|
|
"""Return the number of prefill tokens that are not computed."""
|
|
# we use `get_len()` which includes prompt_len + output_len instead
|
|
# of prompt_len here. This is because during recompute we need to
|
|
# prefill for both prompt and output.
|
|
return self.get_len() - self.get_num_computed_tokens()
|
|
|
|
def get_last_token_id(self) -> int:
|
|
if not self._output_token_ids:
|
|
return self._prompt_token_ids[-1]
|
|
return self._output_token_ids[-1]
|
|
|
|
def get_prompt_token_ids(self) -> Tuple[int, ...]:
|
|
return self.prompt_token_ids
|
|
|
|
def get_output_token_ids(self) -> Tuple[int, ...]:
|
|
return self.output_token_ids
|
|
|
|
def get_delta_and_reset(self) -> SequenceDataDelta:
|
|
delta = SequenceDataDelta(self._new_appended_tokens,
|
|
self._cumulative_logprob,
|
|
self.get_num_computed_tokens(), self.stage)
|
|
# Reset delta state.
|
|
self._new_appended_tokens = []
|
|
return delta
|
|
|
|
def apply_delta(self, delta: SequenceDataDelta):
|
|
self._num_computed_tokens = delta.new_num_computed_tokens
|
|
self._cumulative_logprob = delta.new_cumulative_logprob
|
|
self._stage = delta.new_stage
|
|
self._output_token_ids.extend(delta.new_output_token_ids)
|
|
self._cached_all_token_ids.extend(delta.new_output_token_ids)
|
|
|
|
@property
|
|
def stage(self) -> SequenceStage:
|
|
return self._stage
|
|
|
|
def __repr__(self) -> str:
|
|
return (f"SequenceData("
|
|
f"prompt_token_ids={self._prompt_token_ids}, "
|
|
f"output_token_ids={self.output_token_ids}, "
|
|
f"cumulative_logprob={self.cumulative_logprob}, "
|
|
f"get_num_computed_tokens={self.get_num_computed_tokens()}")
|
|
|
|
|
|
class Sequence:
|
|
"""Stores the data, status, and block information of a sequence.
|
|
|
|
The sequence is constructed from the LLMInputs instance passed
|
|
in through the `inputs` constructor argument.
|
|
|
|
For encoder/decoder models, LLMInputs encapsulates both a
|
|
decoder and encoder prompt, creating an ambiguity about which
|
|
prompt to construct the sequence from. The `from_decoder_prompt`
|
|
constructor argument signals whether to construct the Sequence
|
|
from the LLMInputs decoder prompt, or encoder prompt.
|
|
|
|
Args:
|
|
seq_id: The ID of the sequence.
|
|
inputs: The inputs of the sequence.
|
|
block_size: The block size of the sequence. Should be the same as the
|
|
block size used by the block manager and cache engine.
|
|
eos_token_id: The end-of-sequence (EOS) token id recognized by this LLM.
|
|
lora_request: LoRA request.
|
|
prompt_adapter_request: Prompt Adapter request.
|
|
from_decoder_prompt: Construct Sequence from LLMInputs decoder prompt
|
|
(True) or encoder prompt (False.) Must be True
|
|
for decoder-only model.
|
|
|
|
"""
|
|
|
|
def __init__(
|
|
self,
|
|
seq_id: int,
|
|
inputs: "LLMInputs",
|
|
block_size: int,
|
|
eos_token_id: Optional[int] = None,
|
|
lora_request: Optional[LoRARequest] = None,
|
|
prompt_adapter_request: Optional[PromptAdapterRequest] = None,
|
|
from_decoder_prompt: bool = True,
|
|
) -> None:
|
|
self.seq_id = seq_id
|
|
self.inputs = inputs
|
|
self.block_size = block_size
|
|
self.eos_token_id = eos_token_id
|
|
self.lora_request = lora_request
|
|
self.prompt_adapter_request = prompt_adapter_request
|
|
self.from_decoder_prompt = from_decoder_prompt
|
|
|
|
# For decoder-only models, a Sequence is constructed
|
|
# from an LLMInputs instance (the `inputs` arg.)
|
|
#
|
|
# For encoder/decoder models the same `inputs`
|
|
# instance could be utilized to construct either an
|
|
# encoder sequence or a decoder sequence, because
|
|
# `LLMInputs` has both decoder- and encoder-oriented
|
|
# member variables (i.e. it encapsulates both an encoder
|
|
# and a decoder prompt.) The decision of which type of sequence
|
|
# to generate is determined by the `from_decoder_prompt` argument.
|
|
#
|
|
# When constructing a encoder sequence
|
|
# (`from_decoder_prompt` False) it matters that
|
|
# the `LLMInputs` instance stored in `inputs` is valid
|
|
# in the sense that its encoder-related member variables are
|
|
# populated; below, an exception is raised if this is
|
|
# not the case.
|
|
#
|
|
# When constructing a decoder sequence (`from_decoder_prompt` True)
|
|
# it does not matter whether `inputs` has its encoder-related
|
|
# member variables populated.
|
|
if not (from_decoder_prompt
|
|
or is_valid_encoder_decoder_llm_inputs(inputs)):
|
|
raise ValueError("Cannot extract encoder input prompt from "
|
|
f"invalid input {inputs}; did you forget the "
|
|
"encoder input prompt fields?")
|
|
|
|
self.data = SequenceData.from_seqs(self.prompt_token_ids)
|
|
self.output_logprobs: SampleLogprobs = []
|
|
self.output_text = ""
|
|
|
|
self.status = SequenceStatus.WAITING
|
|
self.stop_reason: Union[int, str, None] = None
|
|
|
|
# These are used to keep track of delta outputs
|
|
self._last_output_token_ids_offset: int = 0
|
|
self._last_output_text_offset: int = 0
|
|
|
|
# Used for incremental detokenization
|
|
self.prefix_offset = 0
|
|
self.read_offset = 0
|
|
# Input + output tokens
|
|
self.tokens: Optional[List[str]] = None
|
|
|
|
@property
|
|
def n_blocks(self) -> int:
|
|
return (self.get_len() + self.block_size - 1) // self.block_size
|
|
|
|
@cached_property
|
|
def prompt(self) -> Optional[str]:
|
|
# Select decoder or encoder input prompt str, as appropriate
|
|
prompt_key: str = ("prompt"
|
|
if self.from_decoder_prompt else "encoder_prompt")
|
|
|
|
return cast(Optional[str], self.inputs.get(prompt_key))
|
|
|
|
@cached_property
|
|
def prompt_token_ids(self) -> List[int]:
|
|
# Select decoder or encoder input prompt token ids, as appropriate
|
|
prompt_token_ids_key: str = ("prompt_token_ids"
|
|
if self.from_decoder_prompt else
|
|
"encoder_prompt_token_ids")
|
|
|
|
# Cache computed prompt token ids
|
|
return cast(List[int], self.inputs.get(prompt_token_ids_key))
|
|
|
|
@property
|
|
def multi_modal_data(self) -> "MultiModalDataDict":
|
|
return self.inputs.get("multi_modal_data") or {}
|
|
|
|
@property
|
|
def lora_int_id(self) -> int:
|
|
return self.lora_request.lora_int_id if self.lora_request else 0
|
|
|
|
@property
|
|
def prompt_adapter_id(self) -> int:
|
|
return self.prompt_adapter_request.prompt_adapter_id \
|
|
if self.prompt_adapter_request else 0
|
|
|
|
def get_output_text_to_return(self, buffer_length: int,
|
|
delta: bool) -> str:
|
|
"""If delta is True, only new text since the last call to
|
|
this method is returned"""
|
|
|
|
# We return the full output text if the sequence is finished.
|
|
truncate = buffer_length and not self.is_finished()
|
|
if not delta:
|
|
return self.output_text[:-buffer_length] if truncate else (
|
|
self.output_text)
|
|
length = len(self.output_text)
|
|
if truncate:
|
|
length -= buffer_length
|
|
last_offset = self._last_output_text_offset
|
|
if last_offset < length:
|
|
self._last_output_text_offset = length
|
|
return self.output_text[last_offset:length]
|
|
return ""
|
|
|
|
def get_output_token_ids_to_return(
|
|
self, delta: bool) -> Union[GenericSequence[int], int]:
|
|
"""If delta is True, only new tokens since the last call to
|
|
this method are returned"""
|
|
if not delta:
|
|
return self.get_output_token_ids()
|
|
|
|
output_len = self.get_output_len()
|
|
|
|
# Get the number of new tokens
|
|
num_new_tokens = output_len - self._last_output_token_ids_offset
|
|
self._last_output_token_ids_offset = output_len
|
|
|
|
# Return new tokens
|
|
if num_new_tokens == 1:
|
|
# Optimization for single decode token case
|
|
# (which is what we have most of the time)
|
|
return self.data._cached_all_token_ids[-1]
|
|
|
|
return self.data._cached_all_token_ids[-num_new_tokens:]
|
|
|
|
def hash_of_block(self, logical_idx: int) -> int:
|
|
# TODO This can produce incorrect hash when block size > prompt size
|
|
|
|
# Compute the number of tokens in the sequence
|
|
# TODO: The current hashing function is O(L^2). We should optimize
|
|
# this in the future.
|
|
num_tokens = self.num_hashed_tokens_of_block(logical_idx)
|
|
hashed_tokens = self.data.get_prefix_token_ids(num_tokens)
|
|
return hash((hashed_tokens, self.lora_int_id))
|
|
|
|
def num_hashed_tokens_of_block(self, logical_idx: int):
|
|
return logical_idx * self.block_size + self.block_size
|
|
|
|
def reset_state_for_recompute(self):
|
|
"""Reset the sequence states for recomputation."""
|
|
self.data.reset_state_for_recompute()
|
|
|
|
def append_token_id(self, token_id: int, logprobs: Dict[int,
|
|
Logprob]) -> None:
|
|
assert token_id in logprobs
|
|
self.output_logprobs.append(logprobs)
|
|
self.data.append_token_id(token_id, logprobs[token_id].logprob)
|
|
|
|
def get_len(self) -> int:
|
|
return self.data.get_len()
|
|
|
|
def get_prompt_len(self) -> int:
|
|
return self.data.get_prompt_len()
|
|
|
|
def get_output_len(self) -> int:
|
|
return self.data.get_output_len()
|
|
|
|
def get_token_ids(self) -> List[int]:
|
|
return self.data.get_token_ids()
|
|
|
|
def get_prompt_token_ids(self) -> Tuple[int, ...]:
|
|
return self.data.get_prompt_token_ids()
|
|
|
|
def get_last_token_id(self) -> int:
|
|
return self.data.get_last_token_id()
|
|
|
|
def get_output_token_ids(self) -> Tuple[int, ...]:
|
|
return self.data.get_output_token_ids()
|
|
|
|
def get_cumulative_logprob(self) -> float:
|
|
return self.data.cumulative_logprob
|
|
|
|
def get_beam_search_score(self,
|
|
length_penalty: float = 1.0,
|
|
seq_len: Optional[int] = None,
|
|
eos_token_id: Optional[int] = None) -> float:
|
|
"""Calculate the beam search score with length penalty.
|
|
|
|
Adapted from
|
|
|
|
https://github.com/huggingface/transformers/blob/ccb92be23def445f2afdea94c31286f84b89eb5b/src/transformers/generation/beam_search.py#L938
|
|
"""
|
|
if seq_len is None:
|
|
seq_len = self.get_len()
|
|
# NOTE: HF implementation does not count the EOS token
|
|
# towards the length, we align with that here for testing.
|
|
if (eos_token_id is not None
|
|
and self.get_last_token_id() == eos_token_id):
|
|
seq_len -= 1
|
|
return self.get_cumulative_logprob() / (seq_len**length_penalty)
|
|
|
|
def is_finished(self) -> bool:
|
|
return SequenceStatus.is_finished(self.status)
|
|
|
|
def fork(self, new_seq_id: int) -> "Sequence":
|
|
new_seq = copy.deepcopy(self)
|
|
new_seq.seq_id = new_seq_id
|
|
return new_seq
|
|
|
|
def get_num_new_tokens(self) -> int:
|
|
"""Get the number of new tokens to be computed.
|
|
|
|
Returns:
|
|
The new number of tokens to be computed. I.e., 1 for decode, or
|
|
the remaining prompt size for prefill.
|
|
"""
|
|
if self.data.stage == SequenceStage.DECODE:
|
|
return 1
|
|
return self.data.get_num_uncomputed_tokens()
|
|
|
|
def is_prefill(self) -> bool:
|
|
return self.data.stage == SequenceStage.PREFILL
|
|
|
|
def __repr__(self) -> str:
|
|
return (f"Sequence(seq_id={self.seq_id}, "
|
|
f"status={self.status.name}, "
|
|
f"num_blocks={self.n_blocks}, ")
|
|
|
|
|
|
class SequenceGroupState(msgspec.Struct,
|
|
omit_defaults=True): # type: ignore[call-arg]
|
|
"""Mutable state tied to a specific sequence group"""
|
|
|
|
# for multi-step decoding
|
|
num_steps: int = 1
|
|
current_step: int = 0
|
|
|
|
@property
|
|
def remaining_steps(self) -> int:
|
|
return self.num_steps - self.current_step
|
|
|
|
|
|
class SequenceGroup:
|
|
"""A group of sequences that are generated from the same prompt.
|
|
|
|
Args:
|
|
request_id: The ID of the request.
|
|
seqs: The list of sequences.
|
|
sampling_params: The sampling parameters used to generate the outputs.
|
|
arrival_time: The arrival time of the request.
|
|
lora_request: LoRA request.
|
|
embeddings: The embeddings vectors of the prompt of the sequence group
|
|
for an embedding model.
|
|
pooling_params: The pooling parameters used to generate the pooling
|
|
for an embedding model.
|
|
encoder_seq: Optional, the single encoder sequence. Should be None
|
|
unless you are working with an encoder/decoder model.
|
|
trace_headers: OpenTelemetry trace headers.
|
|
prompt_adapter_request: Prompt Adapter request.
|
|
"""
|
|
|
|
def __init__(
|
|
self,
|
|
request_id: str,
|
|
seqs: List[Sequence],
|
|
arrival_time: float,
|
|
sampling_params: Optional[SamplingParams] = None,
|
|
lora_request: Optional[LoRARequest] = None,
|
|
embeddings: Optional[List[float]] = None,
|
|
pooling_params: Optional[PoolingParams] = None,
|
|
encoder_seq: Optional[Sequence] = None,
|
|
trace_headers: Optional[Mapping[str, str]] = None,
|
|
prompt_adapter_request: Optional[PromptAdapterRequest] = None,
|
|
) -> None:
|
|
self.request_id = request_id
|
|
self.seqs = seqs
|
|
self.is_single_seq = len(seqs) == 1
|
|
self.seqs_dict = {seq.seq_id: seq for seq in seqs}
|
|
|
|
self.sampling_params = sampling_params
|
|
self.metrics = RequestMetrics(arrival_time=arrival_time,
|
|
last_token_time=arrival_time,
|
|
first_scheduled_time=None,
|
|
first_token_time=None,
|
|
time_in_queue=None)
|
|
self.lora_request = lora_request
|
|
self.prompt_logprobs: Optional[PromptLogprobs] = None
|
|
self.state = SequenceGroupState()
|
|
self.embeddings = embeddings
|
|
self.pooling_params = pooling_params
|
|
self.prompt_adapter_request = prompt_adapter_request
|
|
self.encoder_seq = encoder_seq
|
|
self.trace_headers = trace_headers
|
|
|
|
self.cached_request_output = None
|
|
|
|
@property
|
|
def prompt(self) -> Optional[str]:
|
|
# All sequences in the group should have the same prompt.
|
|
# We use the prompt of an arbitrary sequence.
|
|
return self.seqs[0].prompt
|
|
|
|
@property
|
|
def prompt_token_ids(self) -> List[int]:
|
|
# All sequences in the group should have the same prompt.
|
|
# We use the prompt of an arbitrary sequence.
|
|
return self.seqs[0].prompt_token_ids
|
|
|
|
@property
|
|
def encoder_prompt(self) -> Optional[str]:
|
|
# There are either 0 or 1 encoder sequences
|
|
# If one is present, its prompt is distinct
|
|
# from the decoder's.
|
|
return (self.encoder_seq.prompt
|
|
if self.encoder_seq is not None else None)
|
|
|
|
@property
|
|
def encoder_prompt_token_ids(self) -> Optional[List[int]]:
|
|
# There are either 0 or 1 encoder sequences
|
|
# If one is present, its prompt token ids are
|
|
# distinct from the decoder's.
|
|
return (self.encoder_seq.prompt_token_ids
|
|
if self.encoder_seq is not None else None)
|
|
|
|
@property
|
|
def multi_modal_data(self) -> "MultiModalDataDict":
|
|
# All sequences in the group should have the same multi-modal data.
|
|
# We use the multi-modal data of an arbitrary sequence.
|
|
return self.seqs[0].multi_modal_data
|
|
|
|
@property
|
|
def lora_int_id(self) -> int:
|
|
return self.lora_request.lora_int_id if self.lora_request else 0
|
|
|
|
@property
|
|
def prompt_adapter_id(self) -> int:
|
|
return self.prompt_adapter_request.prompt_adapter_id \
|
|
if self.prompt_adapter_request else 0
|
|
|
|
@property
|
|
def prompt_adapter_num_virtual_tokens(self) -> int:
|
|
return self.prompt_adapter_request.prompt_adapter_num_virtual_tokens\
|
|
if self.prompt_adapter_request else 0
|
|
|
|
def init_multi_step(self, num_scheduler_steps: int) -> None:
|
|
self.state.num_steps = num_scheduler_steps
|
|
self.state.current_step = 0
|
|
|
|
def get_last_latency(self, now: float) -> Optional[float]:
|
|
"""Sets the last token time for Request level timings."""
|
|
# If still in prefill phase, raise Error.
|
|
if self.is_prefill():
|
|
raise ValueError(
|
|
"seq_group.get_last_latency() should not be called "
|
|
"if the seq_group is in prefill phase.")
|
|
|
|
# Otherwise return token latency.
|
|
latency = now - self.metrics.last_token_time
|
|
self.metrics.last_token_time = now
|
|
return latency
|
|
|
|
def maybe_set_first_token_time(self, time: float) -> None:
|
|
"""Sets the first token time for Request level timings."""
|
|
# Note: in a case where a sequence_group is swapped and
|
|
# recomputed, the time between iterations is counted
|
|
# in TPOT, rather than recalculating TTFT (since from the )
|
|
# POV of the user, there is simply a long generation delay.
|
|
if (self.metrics.first_token_time is None
|
|
and self.seqs[0].get_output_len() == 1):
|
|
self.metrics.first_token_time = time
|
|
|
|
def maybe_set_first_scheduled_time(self, time: float) -> None:
|
|
"""Sets the first scheduled time and time in queue for Request
|
|
level timings."""
|
|
if self.metrics.first_scheduled_time is None:
|
|
self.metrics.first_scheduled_time = time
|
|
self.metrics.time_in_queue = time - self.metrics.arrival_time
|
|
|
|
def set_finished_time(self, time: Optional[float]) -> None:
|
|
"""Sets the finished time for Request level timings."""
|
|
self.metrics.finished_time = time
|
|
|
|
def get_max_num_running_seqs(self) -> int:
|
|
"""The maximum number of sequences running in parallel in the remaining
|
|
lifetime of the request."""
|
|
if self.sampling_params and self.sampling_params.use_beam_search:
|
|
# For beam search, maximally there will always be `best_of` beam
|
|
# candidates running in the future.
|
|
best_of = self.sampling_params.best_of
|
|
assert isinstance(best_of, int)
|
|
return best_of
|
|
else:
|
|
if self.sampling_params:
|
|
best_of = self.sampling_params.best_of
|
|
assert isinstance(best_of, int)
|
|
if best_of > self.num_seqs():
|
|
# At prompt stage, the sequence group is not yet filled up
|
|
# and only have one sequence running. However, in the
|
|
# generation stage, we will have `best_of` sequences
|
|
# running.
|
|
return best_of
|
|
# At sampling stages, return the number of actual sequences
|
|
# that are not finished yet.
|
|
return self.num_unfinished_seqs()
|
|
|
|
def get_seqs(
|
|
self,
|
|
status: Optional[SequenceStatus] = None,
|
|
) -> List[Sequence]:
|
|
if status is None:
|
|
return self.seqs
|
|
|
|
if self.is_single_seq:
|
|
return self.seqs if self.seqs[0].status == status else []
|
|
|
|
return [seq for seq in self.seqs if seq.status == status]
|
|
|
|
def is_encoder_decoder(self) -> bool:
|
|
return self.encoder_seq is not None
|
|
|
|
def get_encoder_seq(self) -> Optional[Sequence]:
|
|
return self.encoder_seq
|
|
|
|
def get_unfinished_seqs(self) -> List[Sequence]:
|
|
if self.is_single_seq:
|
|
return self.seqs if not self.seqs[0].is_finished() else []
|
|
|
|
return [seq for seq in self.seqs if not seq.is_finished()]
|
|
|
|
def get_finished_seqs(self) -> List[Sequence]:
|
|
if self.is_single_seq:
|
|
return self.seqs if self.seqs[0].is_finished() else []
|
|
|
|
return [seq for seq in self.seqs if seq.is_finished()]
|
|
|
|
def update_num_computed_tokens(self, num_new_computed_tokens: int):
|
|
"""Update number of tokens computed so far."""
|
|
for seq in self.seqs:
|
|
if not seq.is_finished():
|
|
seq.data.update_num_computed_tokens(num_new_computed_tokens)
|
|
|
|
def get_num_uncomputed_tokens(self) -> int:
|
|
num_uncomputed_tokens = 0
|
|
for seq in self.seqs:
|
|
if not seq.is_finished():
|
|
num_uncomputed_tokens += seq.data.get_num_uncomputed_tokens()
|
|
return num_uncomputed_tokens
|
|
|
|
def num_seqs(self, status: Optional[SequenceStatus] = None) -> int:
|
|
# Optimization. We don't need to call get_seqs if we don't need to
|
|
# filter by states.
|
|
if status is None:
|
|
return len(self.seqs)
|
|
|
|
if self.is_single_seq:
|
|
return 1 if self.seqs[0].status == status else 0
|
|
|
|
return len(self.get_seqs(status))
|
|
|
|
def num_unfinished_seqs(self) -> int:
|
|
if self.is_single_seq:
|
|
return 1 if not self.seqs[0].is_finished() else 0
|
|
|
|
return len(self.get_unfinished_seqs())
|
|
|
|
def num_finished_seqs(self) -> int:
|
|
if self.is_single_seq:
|
|
return 1 if self.seqs[0].is_finished() else 0
|
|
|
|
return len(self.get_finished_seqs())
|
|
|
|
def find(self, seq_id: int) -> Sequence:
|
|
if seq_id not in self.seqs_dict:
|
|
raise ValueError(f"Sequence {seq_id} not found.")
|
|
return self.seqs_dict[seq_id]
|
|
|
|
def add(self, seq: Sequence) -> None:
|
|
if seq.seq_id in self.seqs_dict:
|
|
raise ValueError(f"Sequence {seq.seq_id} already exists.")
|
|
self.seqs_dict[seq.seq_id] = seq
|
|
self.seqs.append(seq)
|
|
self.is_single_seq = len(self.seqs) == 1
|
|
|
|
def remove(self, seq_id: int) -> None:
|
|
seq = self.seqs_dict.pop(seq_id, None)
|
|
if seq is None:
|
|
raise ValueError(f"Sequence {seq_id} not found.")
|
|
self.seqs.remove(seq)
|
|
self.is_single_seq = len(self.seqs) == 1
|
|
|
|
def is_finished(self) -> bool:
|
|
if self.is_single_seq:
|
|
return self.seqs[0].is_finished()
|
|
|
|
return all(seq.is_finished() for seq in self.seqs)
|
|
|
|
def is_prefill(self) -> bool:
|
|
# Every sequence should be in the same stage.
|
|
return self.seqs[0].is_prefill()
|
|
|
|
def __repr__(self) -> str:
|
|
return (f"SequenceGroup(request_id={self.request_id}, "
|
|
f"sampling_params={self.sampling_params}, "
|
|
f"num_seqs={len(self.seqs)})")
|
|
|
|
|
|
class SequenceGroupMetadataDelta(
|
|
msgspec.Struct,
|
|
tag=True, # type: ignore[call-arg]
|
|
array_like=True, # type: ignore[call-arg]
|
|
omit_defaults=True): # type: ignore[call-arg]
|
|
"""Delta of SequenceGroupMetadata.
|
|
|
|
After sending the first SequenceGroupMetadata, vLLM scheduler
|
|
only sends delta to reduce the data payload size.
|
|
"""
|
|
seq_data_delta: Dict[int, SequenceDataDelta]
|
|
request_id: str
|
|
block_tables: Dict[int, List[int]]
|
|
is_prompt: bool
|
|
do_sample: bool = True
|
|
token_chunk_size: Optional[int] = None
|
|
computed_block_nums: Optional[List[int]] = None
|
|
state: Optional[SequenceGroupState] = msgspec.field(
|
|
default_factory=lambda: SequenceGroupState())
|
|
|
|
|
|
class SequenceGroupMetadata(
|
|
msgspec.Struct,
|
|
tag=True, # type: ignore[call-arg]
|
|
array_like=True, # type: ignore[call-arg]
|
|
omit_defaults=True): # type: ignore[call-arg]
|
|
"""Metadata for a sequence group. Used to create `AttentionMetadata`.
|
|
|
|
Args:
|
|
request_id: The ID of the request.
|
|
is_prompt: Whether the request is at prompt stage.
|
|
seq_data: The sequence data. (Seq id -> sequence data)
|
|
sampling_params: The sampling parameters used to generate the outputs.
|
|
block_tables: The block tables. (Seq id -> list of physical block
|
|
numbers)
|
|
do_sample: True if sampling is required. Sampling is not required when
|
|
e.g., prefill is chunked, and the current iteration only computes
|
|
query tokens for prefill, we don't need sampling.
|
|
token_chunk_size: The number of tokens to be processed (per sequence).
|
|
None if chunking is not required.
|
|
lora_request: LoRA request.
|
|
computed_block_nums: The block numbers that are already computed,
|
|
used in prefix caching.
|
|
state: Internal state tied to this sequence group.
|
|
multi_modal_data: Multi modal data.
|
|
encoder_seq_data: Optional sequence data for encoder prompt
|
|
(SequenceGroup.encoder_seq). Should be None
|
|
unless you are working with an encoder/decoder
|
|
model.
|
|
cross_block_table: Optional cross-attention block table associated
|
|
with the encoder prompt
|
|
(SequenceGroup.encoder_seq). Should be None
|
|
unless you are working with an encoder/decoder
|
|
model.
|
|
prompt_adapter_request: Prompt Adapter request.
|
|
"""
|
|
|
|
request_id: str
|
|
is_prompt: bool
|
|
seq_data: Dict[int, SequenceData]
|
|
sampling_params: Optional[SamplingParams]
|
|
block_tables: Dict[int, List[int]]
|
|
do_sample: bool = True
|
|
pooling_params: Optional[PoolingParams] = None
|
|
lora_request: Optional[LoRARequest] = None
|
|
computed_block_nums: Optional[List[int]] = None
|
|
state: Optional[SequenceGroupState] = msgspec.field(
|
|
default_factory=lambda: SequenceGroupState())
|
|
# "MultiModalDataDict" types. We have to use Any due to msgspec
|
|
# doesn't allow to have union of 2 different dicts.
|
|
multi_modal_data: Optional[Any] = None
|
|
encoder_seq_data: Optional[SequenceData] = None
|
|
cross_block_table: Optional[List[int]] = None
|
|
prompt_adapter_request: Optional[PromptAdapterRequest] = None
|
|
token_chunk_size: Optional[int] = None
|
|
|
|
### Stateful fields that are lazily defined. ###
|
|
# The number of speculative tokens adopted in this request.
|
|
# None means specuative decoding is not used.
|
|
# Zero means speculative decoding is disabled for some reasons.
|
|
# TODO: We should maintain this states out of the sequence group.
|
|
num_speculative_tokens: Optional[int] = None
|
|
|
|
def __post_init__(self):
|
|
if self.seq_data is not None and self.token_chunk_size is None:
|
|
if self.is_prompt:
|
|
self.token_chunk_size = next(iter(
|
|
self.seq_data.values())).get_len()
|
|
else:
|
|
self.token_chunk_size = 1
|
|
|
|
@property
|
|
def lora_int_id(self) -> int:
|
|
return self.lora_request.lora_int_id if self.lora_request else 0
|
|
|
|
@property
|
|
def prompt_adapter_id(self) -> int:
|
|
return self.prompt_adapter_request.prompt_adapter_id \
|
|
if self.prompt_adapter_request else 0
|
|
|
|
@property
|
|
def prompt_adapter_num_virtual_tokens(self) -> int:
|
|
return self.prompt_adapter_request.prompt_adapter_num_virtual_tokens \
|
|
if self.prompt_adapter_request else 0
|
|
|
|
def apply_delta(self,
|
|
sequence_group_metadata_delta: SequenceGroupMetadataDelta):
|
|
for id, delta in sequence_group_metadata_delta.seq_data_delta.items():
|
|
self.seq_data[id].apply_delta(delta)
|
|
assert self.request_id == sequence_group_metadata_delta.request_id
|
|
self.block_tables = sequence_group_metadata_delta.block_tables
|
|
self.token_chunk_size = sequence_group_metadata_delta.token_chunk_size
|
|
self.do_sample = sequence_group_metadata_delta.do_sample
|
|
self.is_prompt = sequence_group_metadata_delta.is_prompt
|
|
|
|
def finish_step(self) -> None:
|
|
assert self.state is not None
|
|
assert self.state.current_step < self.state.num_steps
|
|
self.state.current_step += 1
|
|
|
|
|
|
class SequenceOutput(
|
|
msgspec.Struct,
|
|
omit_defaults=True, # type: ignore[call-arg]
|
|
array_like=True): # type: ignore[call-arg]
|
|
"""The model output associated with a sequence.
|
|
|
|
Args:
|
|
parent_seq_id: The ID of the parent sequence (for forking in beam
|
|
search).
|
|
output_token: The output token ID.
|
|
logprobs: The logprobs of the output token.
|
|
(Token id -> logP(x_i+1 | x_0, ..., x_i))
|
|
"""
|
|
parent_seq_id: int
|
|
output_token: int
|
|
logprobs: Dict[int, Logprob]
|
|
|
|
def __repr__(self) -> str:
|
|
return (f"SequenceOutput(parent_seq_id={self.parent_seq_id}, "
|
|
f"output_token={self.output_token}, "
|
|
f"logprobs={self.logprobs})")
|
|
|
|
def __eq__(self, other: object) -> bool:
|
|
if not isinstance(other, SequenceOutput):
|
|
raise NotImplementedError()
|
|
equal = (self.parent_seq_id == other.parent_seq_id
|
|
and self.output_token == other.output_token)
|
|
log_probs_equal = other.logprobs == self.logprobs
|
|
return equal and log_probs_equal
|
|
|
|
|
|
class SequenceGroupOutput(ABC):
|
|
"""The base class for model outputs associated with a sequence group."""
|
|
|
|
@abstractmethod
|
|
def __repr__(self) -> str:
|
|
pass
|
|
|
|
@abstractmethod
|
|
def __eq__(self, other: object) -> bool:
|
|
pass
|
|
|
|
|
|
class CompletionSequenceGroupOutput(
|
|
msgspec.Struct,
|
|
omit_defaults=True, # type: ignore[call-arg]
|
|
array_like=True): # type: ignore[call-arg]
|
|
__metaclass__ = SequenceGroupOutput
|
|
"""The model output associated with a completion sequence group."""
|
|
samples: List[SequenceOutput]
|
|
# Prompt logprob for each prompt query token.
|
|
prompt_logprobs: Optional[PromptLogprobs]
|
|
|
|
def __repr__(self) -> str:
|
|
return (f"CompletionSequenceGroupOutput(samples={self.samples}, "
|
|
f"prompt_logprobs={self.prompt_logprobs})")
|
|
|
|
def __eq__(self, other: object) -> bool:
|
|
if not isinstance(other, CompletionSequenceGroupOutput):
|
|
raise NotImplementedError()
|
|
return (self.samples == other.samples
|
|
and self.prompt_logprobs == other.prompt_logprobs)
|
|
|
|
|
|
class EmbeddingSequenceGroupOutput(
|
|
msgspec.Struct,
|
|
omit_defaults=True, # type: ignore[call-arg]
|
|
array_like=True, # type: ignore[call-arg]
|
|
):
|
|
"""The model output associated with an embedding sequence group."""
|
|
__metaclass__ = SequenceGroupOutput
|
|
embeddings: List[int]
|
|
|
|
def __repr__(self) -> str:
|
|
return (f"EmbeddingSequenceGroupOutput("
|
|
f"embeddings_shape={len(self.embeddings)})")
|
|
|
|
def __eq__(self, other: object) -> bool:
|
|
if not isinstance(other, EmbeddingSequenceGroupOutput):
|
|
raise NotImplementedError()
|
|
return self.embeddings == other.embeddings
|
|
|
|
|
|
class IntermediateTensors(
|
|
msgspec.Struct,
|
|
omit_defaults=True, # type: ignore[call-arg]
|
|
array_like=True): # type: ignore[call-arg]
|
|
"""For all pipeline stages except the last, we need to return the hidden
|
|
states and residuals to be sent to the next stage. This data structure
|
|
contains the hidden states and residuals for a request.
|
|
"""
|
|
|
|
tensors: Dict[str, torch.Tensor]
|
|
|
|
def __getitem__(self, key: Union[str, slice]):
|
|
if isinstance(key, str):
|
|
return self.tensors[key]
|
|
elif isinstance(key, slice):
|
|
return self.__class__({k: v[key] for k, v in self.tensors.items()})
|
|
|
|
def __setitem__(self, key: str, value):
|
|
self.tensors[key] = value
|
|
|
|
def __len__(self):
|
|
return len(self.tensors)
|
|
|
|
def __eq__(self, other: object):
|
|
return isinstance(other, self.__class__) and self
|
|
|
|
def __repr__(self) -> str:
|
|
return f"IntermediateTensors(tensors={self.tensors})"
|
|
|
|
|
|
class PoolerOutput(
|
|
msgspec.Struct,
|
|
omit_defaults=True, # type: ignore[call-arg]
|
|
array_like=True): # type: ignore[call-arg]
|
|
"""The output from a pooling operation in the embedding model."""
|
|
outputs: List[EmbeddingSequenceGroupOutput]
|
|
|
|
spec_decode_worker_metrics: Optional[SpecDecodeWorkerMetrics] = None
|
|
|
|
def __getitem__(self, idx: int):
|
|
return self.outputs[idx]
|
|
|
|
def __setitem__(self, idx: int, value):
|
|
self.outputs[idx] = value
|
|
|
|
def __len__(self):
|
|
return len(self.outputs)
|
|
|
|
def __eq__(self, other: object):
|
|
return isinstance(other,
|
|
self.__class__) and self.outputs == other.outputs
|
|
|
|
|
|
def get_all_seq_ids(
|
|
seq_group_metadata_list: List[SequenceGroupMetadata]) -> List[int]:
|
|
"""Given a list of SequenceGroupMetadata, create a list of all
|
|
sequence ids.
|
|
"""
|
|
return [seq_id for sg in seq_group_metadata_list for seq_id in sg.seq_data]
|
|
|
|
|
|
def get_all_seq_ids_and_request_ids(
|
|
seq_group_metadata_list: List[SequenceGroupMetadata]
|
|
) -> Tuple[List[int], Dict[str, Set[int]]]:
|
|
"""Given a list of SequenceGroupMetadata, create a list of all
|
|
sequence ids.
|
|
"""
|
|
seq_ids: List[int] = []
|
|
request_id_seq_ids_mapping: Dict[str, Set[int]] = defaultdict(set)
|
|
for sg in seq_group_metadata_list:
|
|
for seq_id in sg.seq_data:
|
|
seq_ids.append(seq_id)
|
|
request_id_seq_ids_mapping[sg.request_id].add(seq_id)
|
|
return seq_ids, request_id_seq_ids_mapping
|
|
|
|
|
|
class HiddenStates(msgspec.Struct, array_like=True,
|
|
omit_defaults=True): # type: ignore[call-arg]
|
|
"""Hidden states corresponding to in-progress sequences.
|
|
Used in speculative decoding to pass hidden states from
|
|
the target model to the proposer model.
|
|
|
|
seq_ids are the sequence ids of each entry of the batch
|
|
dimension of the hidden_states tensor"""
|
|
# Scorer hidden states. For prefill step, it is used for hidden states of
|
|
# all tokens, whereas for decode step, it use used for last accepted tokens.
|
|
hidden_states: torch.Tensor
|
|
# The sequence group metadata list. Only needed for decode step.
|
|
seq_group_metadata_list: Optional[List[SequenceGroupMetadata]] = None
|
|
# Scorer hidden states of the 2nd last token proposed by the proposer (
|
|
# irrespective of whether it was accepted or not). Only used for cases when
|
|
# last proposed token is accepted (i.e., in case of bonus tokens). For the
|
|
# case of no bonus tokens, these are ignored.
|
|
second_last_token_hidden_states: Optional[torch.Tensor] = None
|
|
|
|
_seq_ids: List[int] = msgspec.field(default_factory=list)
|
|
|
|
def __post_init__(self):
|
|
if self.seq_group_metadata_list is not None:
|
|
assert len(self.seq_group_metadata_list) == len(self.hidden_states)
|
|
self._seq_ids = get_all_seq_ids(self.seq_group_metadata_list)
|
|
|
|
@property
|
|
def seq_ids(self) -> List[int]:
|
|
return self._seq_ids
|
|
|
|
def update(self,
|
|
hidden_states: torch.Tensor,
|
|
seq_group_metadata_list: List[SequenceGroupMetadata],
|
|
second_last_token_hidden_states: Optional[torch.Tensor] = None):
|
|
"""Update hidden states from target model invocation. Only used for
|
|
decode steps"""
|
|
assert len(seq_group_metadata_list) == len(hidden_states)
|
|
self._seq_ids.extend(get_all_seq_ids(seq_group_metadata_list))
|
|
self.hidden_states = torch.cat([self.hidden_states, hidden_states])
|
|
|
|
if self.second_last_token_hidden_states is not None:
|
|
# Adding dummy hidden_states to this to maintain same shape
|
|
self.second_last_token_hidden_states = torch.cat([
|
|
self.second_last_token_hidden_states,
|
|
torch.zeros_like(hidden_states)
|
|
if second_last_token_hidden_states is None else
|
|
second_last_token_hidden_states
|
|
])
|
|
|
|
def prune(self,
|
|
seq_group_metadata_list: List[SequenceGroupMetadata]) -> None:
|
|
"""Prune to provided list of sequence ids. Only used for decode steps.
|
|
"""
|
|
# Currently this prunes all seq_ids not present in
|
|
# seq_group_metadata_list which might cause problems where a sequence
|
|
# may be "paused" then "resumed" later. This should only prune sequences
|
|
# which are confirmed to be aborted.
|
|
seq_ids = get_all_seq_ids(seq_group_metadata_list)
|
|
if seq_ids != self._seq_ids:
|
|
# Batch contents changed - prune removed sequences.
|
|
index = [self._seq_ids.index(seq_id) for seq_id in seq_ids]
|
|
self.hidden_states = self.hidden_states[index]
|
|
if self.second_last_token_hidden_states is not None:
|
|
self.second_last_token_hidden_states = self\
|
|
.second_last_token_hidden_states[index]
|
|
self._seq_ids = seq_ids
|
|
|
|
def expand_with_bonus_tokens(
|
|
self, seq_with_bonus_token_in_last_step: set) -> None:
|
|
"""Expand hidden states for sequences with bonus tokens. This is in
|
|
alignment with `MultiStepWorker._expand_execute_model_request`."""
|
|
if self.second_last_token_hidden_states is None \
|
|
or not seq_with_bonus_token_in_last_step:
|
|
return
|
|
|
|
index = []
|
|
for seq_id in self._seq_ids:
|
|
i = self._seq_ids.index(seq_id)
|
|
if seq_id in seq_with_bonus_token_in_last_step:
|
|
index.append(i + len(self._seq_ids))
|
|
index.append(i)
|
|
|
|
self.hidden_states = torch.cat(
|
|
[self.hidden_states, self.second_last_token_hidden_states])[index]
|
|
|
|
|
|
class ExecuteModelRequest(
|
|
msgspec.Struct,
|
|
array_like=True, # type: ignore[call-arg]
|
|
omit_defaults=True): # type: ignore[call-arg]
|
|
"""The model execution request, containing CPU metadata only. The LLM
|
|
engine should create an instance of this class for each request batch."""
|
|
# The sequence group metadata list.
|
|
seq_group_metadata_list: List[Union[SequenceGroupMetadata,
|
|
SequenceGroupMetadataDelta]]
|
|
# Blocks to swap in. List of CPU -> GPU block number.
|
|
blocks_to_swap_in: List[Tuple[int,
|
|
int]] = msgspec.field(default_factory=list)
|
|
# Blocks to swap out. List of GPU -> CPU block number.
|
|
blocks_to_swap_out: List[Tuple[int,
|
|
int]] = msgspec.field(default_factory=list)
|
|
# Blocks to copy. Source to dest block.
|
|
blocks_to_copy: List[Tuple[int, int]] = msgspec.field(default_factory=list)
|
|
# Virtual engine ID for pipeline parallel.
|
|
virtual_engine: int = 0
|
|
# The number of slots for lookahead decoding.
|
|
num_lookahead_slots: int = 0
|
|
# The number of requests in the running queue.
|
|
running_queue_size: int = 0
|
|
# Optional hidden states from prior step.
|
|
previous_hidden_states: Optional[HiddenStates] = None
|
|
# The number of forward steps to run.
|
|
num_steps: int = 1
|
|
# Finished request ids since last step.
|
|
finished_requests_ids: List[str] = msgspec.field(default_factory=list)
|
|
# The last sampled token ids for multi step decoding.
|
|
last_sampled_token_ids: Optional[torch.Tensor] = None
|
|
# Async callback
|
|
async_callback: Optional[Callable] = None
|
|
|
|
@property
|
|
def is_first_multi_step(self) -> bool:
|
|
# TODO(will) make this be able to handle batches with variable number of
|
|
# steps
|
|
assert len(self.seq_group_metadata_list) > 0
|
|
first_seq_group = self.seq_group_metadata_list[0]
|
|
assert first_seq_group.state is not None
|
|
return first_seq_group.state.current_step == 0
|
|
|
|
@property
|
|
def is_last_step(self) -> bool:
|
|
# TODO(will) make this be able to handle batches with variable number of
|
|
# steps
|
|
assert len(self.seq_group_metadata_list) > 0
|
|
first_seq_group = self.seq_group_metadata_list[0]
|
|
assert first_seq_group.state is not None
|
|
return first_seq_group.state.remaining_steps == 1
|
|
|
|
@property
|
|
def current_step(self) -> int:
|
|
# TODO(will) make this be able to handle batches with variable number of
|
|
# steps
|
|
assert len(self.seq_group_metadata_list) > 0
|
|
state = self.seq_group_metadata_list[0].state
|
|
assert state is not None
|
|
return state.current_step
|
|
|
|
def clone(
|
|
self, seq_group_metadata_list: List[Union[SequenceGroupMetadata,
|
|
SequenceGroupMetadataDelta]]
|
|
) -> "ExecuteModelRequest":
|
|
"""Clone the request with a new sequence group metadata list."""
|
|
return ExecuteModelRequest(
|
|
seq_group_metadata_list=seq_group_metadata_list,
|
|
blocks_to_swap_in=self.blocks_to_swap_in.copy(),
|
|
blocks_to_swap_out=self.blocks_to_swap_out.copy(),
|
|
blocks_to_copy=self.blocks_to_copy.copy(),
|
|
virtual_engine=self.virtual_engine,
|
|
num_lookahead_slots=self.num_lookahead_slots,
|
|
running_queue_size=self.running_queue_size,
|
|
previous_hidden_states=self.previous_hidden_states,
|
|
num_steps=self.num_steps,
|
|
finished_requests_ids=self.finished_requests_ids,
|
|
last_sampled_token_ids=self.last_sampled_token_ids.clone()
|
|
if self.last_sampled_token_ids is not None else None,
|
|
async_callback=self.async_callback)
|