vllm/tests/worker/test_model_runner.py
2025-03-02 17:34:51 -08:00

384 lines
15 KiB
Python

# SPDX-License-Identifier: Apache-2.0
import pytest
import torch
from vllm.distributed.parallel_state import (ensure_model_parallel_initialized,
init_distributed_environment)
from vllm.engine.arg_utils import EngineArgs
from vllm.model_executor.sampling_metadata import SamplingMetadata
from vllm.sequence import SamplingParams, SequenceData, SequenceGroupMetadata
from vllm.utils import get_open_port
from vllm.worker.model_runner import ModelRunner
def _create_model_runner(model: str, *args, **kwargs) -> ModelRunner:
engine_args = EngineArgs(model, *args, **kwargs)
engine_config = engine_args.create_engine_config()
model_runner = ModelRunner(
vllm_config=engine_config,
is_driver_worker=True,
)
return model_runner
def test_deepseek_mla_attn_backend_module():
model_runner = _create_model_runner(
"deepseek-ai/DeepSeek-Coder-V2-Lite-Instruct",
trust_remote_code=True,
enable_chunked_prefill=False,
)
assert model_runner.attn_backend.__name__ == "TritonMLABackend"
@pytest.mark.parametrize("batch_size", list(range(1, 257)))
def test_prepare_prompt(batch_size):
model_runner = _create_model_runner(
"facebook/opt-125m",
max_num_batched_tokens=100000,
max_num_seqs=100000,
enable_chunked_prefill=False,
)
seq_lens: list[int] = []
seq_group_metadata_list: list[SequenceGroupMetadata] = []
block_tables = {0: [1]}
for i in range(batch_size):
# make sure all tokens fit into one block
seq_len = i % (model_runner.block_size - 1) + 1
seq_lens.append(seq_len)
seq_data = SequenceData.from_seqs(range(seq_len))
seq_group_metadata = SequenceGroupMetadata(
request_id=f"test_{i}",
is_prompt=True,
seq_data={0: seq_data},
sampling_params=SamplingParams(temperature=0),
block_tables=block_tables,
)
assert seq_group_metadata.token_chunk_size == seq_data.get_len()
seq_group_metadata_list.append(seq_group_metadata)
expected_selected_token_indices = []
selected_token_start_idx = 0
for seq_len in seq_lens:
expected_selected_token_indices.append(selected_token_start_idx +
seq_len - 1)
selected_token_start_idx += seq_len
model_input = model_runner._prepare_model_input_tensors(
seq_group_metadata_list)
input_tokens = model_input.input_tokens
input_positions = model_input.input_positions
attn_metadata = model_input.attn_metadata
return_seq_lens = model_input.seq_lens
slot_mapping = attn_metadata.slot_mapping
assert return_seq_lens == seq_lens
assert len(slot_mapping) == len(input_tokens)
# Verify input metadata is correct for prompts.
device = model_runner.device
assert attn_metadata.num_prefills > 0
assert attn_metadata.num_decode_tokens == 0
torch.testing.assert_close(
attn_metadata.seq_lens_tensor,
torch.tensor(seq_lens, device=device, dtype=torch.int))
assert attn_metadata.seq_lens == seq_lens
assert attn_metadata.max_prefill_seq_len == max(seq_lens)
assert attn_metadata.max_decode_seq_len == 0
# Test subquery start locs.
start_idx = 0
start_loc = [start_idx]
for seq_len in seq_lens:
start_idx += seq_len
start_loc.append(start_idx)
torch.testing.assert_close(
attn_metadata.query_start_loc,
torch.tensor(start_loc, dtype=torch.int32, device=device))
# Test seq start locs. Note that for normal prefill it is
# equivalent to query_start_loc.
start_idx = 0
seq_start_loc = [start_idx]
for seq_len in seq_lens:
start_idx += seq_len
seq_start_loc.append(start_idx)
torch.testing.assert_close(
attn_metadata.seq_start_loc,
torch.tensor(start_loc, dtype=torch.int32, device=device))
torch.testing.assert_close(
attn_metadata.context_lens_tensor,
torch.zeros(attn_metadata.context_lens_tensor.shape[0],
dtype=torch.int,
device=device))
expected = torch.tensor([[] for _ in range(len(seq_group_metadata_list))],
dtype=torch.int32,
device=model_runner.device)
torch.testing.assert_close(attn_metadata.block_tables, expected)
# Cuda graph should not be used for prerill.
assert attn_metadata.use_cuda_graph is False
assert len(input_tokens) == sum(seq_lens)
assert len(input_positions) == sum(seq_lens)
torch.testing.assert_close(input_tokens, input_positions)
sampling_metadata = SamplingMetadata.prepare(
seq_group_metadata_list,
seq_lens,
query_lens=seq_lens,
device=model_runner.device,
pin_memory=model_runner.pin_memory)
assert len(input_tokens) == sum(seq_lens)
assert len(input_positions) == sum(seq_lens)
actual = sampling_metadata.selected_token_indices
expected = torch.tensor(expected_selected_token_indices,
device=actual.device,
dtype=actual.dtype)
torch.testing.assert_close(actual, expected)
torch.allclose(input_tokens, input_positions)
actual = sampling_metadata.selected_token_indices
expected = torch.tensor(expected_selected_token_indices,
device=actual.device,
dtype=actual.dtype)
torch.testing.assert_close(actual, expected)
@pytest.mark.parametrize("batch_size", list(range(1, 257)))
def test_prepare_decode_cuda_graph(batch_size):
model_runner = _create_model_runner(
"facebook/opt-125m",
seed=0,
dtype="float16",
enforce_eager=False,
max_num_batched_tokens=100000,
max_num_seqs=100000,
enable_chunked_prefill=False,
)
context_lens: list[int] = []
seq_group_metadata_list: list[SequenceGroupMetadata] = []
# Assume each seq group finishes prefill.
for i in range(batch_size):
# make sure all tokens fit into one block
context_len = i % (model_runner.block_size - 1) + 1
context_lens.append(context_len)
seq_data = SequenceData.from_seqs(range(context_len))
seq_data.update_num_computed_tokens(context_len)
# Append one token ID since prefill is finished.
seq_data.append_token_id(1, 0)
seq_group_metadata = SequenceGroupMetadata(
request_id=f"test_{i}",
is_prompt=False,
seq_data={0: seq_data},
sampling_params=SamplingParams(temperature=0),
block_tables={0: [1]},
)
assert seq_group_metadata.token_chunk_size == 1
seq_group_metadata_list.append(seq_group_metadata)
model_input = model_runner._prepare_model_input_tensors(
seq_group_metadata_list)
input_tokens, input_positions, attn_metadata, slot_mapping = (
model_input.input_tokens, model_input.input_positions,
model_input.attn_metadata, model_input.attn_metadata.slot_mapping)
assert len(slot_mapping) == len(input_tokens)
expected_bs = model_runner.vllm_config.pad_for_cudagraph(
len(seq_group_metadata_list))
# Verify input metadata is correct for prompts.
device = model_runner.device
assert attn_metadata.num_prefills == 0
assert attn_metadata.num_prefill_tokens == 0
seq_lens = [context_len + 1 for context_len in context_lens]
# seq_lens are padded to expected_bs
for _ in range(expected_bs - len(seq_lens)):
seq_lens.append(1)
assert attn_metadata.seq_lens == seq_lens
assert attn_metadata.num_decode_tokens == len(seq_lens)
start_idx = 0
start_loc = [start_idx]
for _ in context_lens:
# decode has only 1 token for query.
start_idx += 1
start_loc.append(start_idx)
torch.testing.assert_close(
attn_metadata.query_start_loc,
torch.tensor(start_loc, dtype=torch.int32, device=device))
start_idx = 0
seq_start_loc = [start_idx]
for seq_len in seq_lens:
start_idx += seq_len
seq_start_loc.append(start_idx)
torch.testing.assert_close(
attn_metadata.seq_start_loc,
torch.tensor(seq_start_loc, dtype=torch.int32, device=device))
torch.testing.assert_close(
attn_metadata.context_lens_tensor,
torch.tensor(context_lens, dtype=torch.int, device=device))
assert attn_metadata.max_decode_seq_len == max(seq_lens)
torch.testing.assert_close(
attn_metadata.seq_lens_tensor[:len(seq_lens)],
torch.tensor(seq_lens, dtype=torch.int, device=device))
# block table's first index corresponds to each batch, meaning in
# decoding it is each token.
assert attn_metadata.block_tables.shape[0] == len(input_tokens)
# Block table's second dim correspondsd to each token's block number.
# It is padded up to
assert attn_metadata.block_tables.shape[1] == (
model_runner.get_max_block_per_batch())
assert attn_metadata.use_cuda_graph is True
assert len(input_tokens) == expected_bs
assert len(input_positions) == expected_bs
torch.allclose(input_tokens, input_positions)
# Verify Sampling
expected_selected_token_indices = []
for selected_token_start_idx, _ in enumerate(context_lens):
expected_selected_token_indices.append(selected_token_start_idx)
sampling_metadata = SamplingMetadata.prepare(
seq_group_metadata_list,
seq_lens,
# query lens is all 1 for decode.
query_lens=[1 for _ in range(len(context_lens))],
device=model_runner.device,
pin_memory=model_runner.pin_memory)
actual = sampling_metadata.selected_token_indices
expected = torch.tensor(expected_selected_token_indices,
device=actual.device,
dtype=actual.dtype)
torch.testing.assert_close(actual, expected)
def test_empty_seq_group():
"""Verify prepare prompt and decode returns empty output."""
model_runner = _create_model_runner(
"facebook/opt-125m",
seed=0,
dtype="float16",
enforce_eager=False,
)
seq_group_metadata_list: list[SequenceGroupMetadata] = []
model_input = model_runner._prepare_model_input_tensors(
seq_group_metadata_list)
input_tokens, input_positions, attn_metadata = (
model_input.input_tokens,
model_input.input_positions,
model_input.attn_metadata,
)
assert input_tokens is None
assert input_positions is None
assert attn_metadata is None
model_input = model_runner._prepare_model_input_tensors(
seq_group_metadata_list)
(input_tokens, input_positions, attn_metadata, return_seq_lens) = (
model_input.input_tokens,
model_input.input_positions,
model_input.attn_metadata,
model_input.seq_lens,
)
assert input_tokens is None
assert input_positions is None
assert attn_metadata is None
assert return_seq_lens is None
@pytest.fixture
def distributed_init():
init_distributed_environment(
world_size=1,
rank=0,
distributed_init_method=f"tcp://127.0.0.1:{get_open_port()}",
local_rank=0)
ensure_model_parallel_initialized(1, 1)
@pytest.mark.parametrize("batch_size", list(range(2, 128)))
@pytest.mark.parametrize("enforce_eager", [True, False])
def test_hybrid_batches(batch_size, enforce_eager, distributed_init):
model_runner = _create_model_runner(
"facebook/opt-125m",
seed=0,
dtype="float16",
enforce_eager=enforce_eager,
max_num_batched_tokens=100000,
max_num_seqs=100000,
enable_chunked_prefill=True,
)
# Add prefill requests.
seq_lens: list[int] = []
seq_group_metadata_list: list[SequenceGroupMetadata] = []
prefill_metadata_list: list[SequenceGroupMetadata] = []
decode_metadata_list: list[SequenceGroupMetadata] = []
block_tables = {0: [1]}
prefill_batch_size = batch_size // 2
decode_batch_size = batch_size - prefill_batch_size
for i in range(prefill_batch_size):
# make sure all tokens fit into one block
seq_len = i % (model_runner.block_size - 1) + 1
seq_lens.append(seq_len)
seq_data = SequenceData.from_seqs(range(seq_len))
seq_group_metadata = SequenceGroupMetadata(
request_id=f"test_{i}",
is_prompt=True,
seq_data={0: seq_data},
sampling_params=SamplingParams(temperature=0),
block_tables=block_tables,
)
assert seq_group_metadata.token_chunk_size == seq_data.get_len()
seq_group_metadata_list.append(seq_group_metadata)
prefill_metadata_list.append(seq_group_metadata)
# Add decode requests
for i in range(prefill_batch_size, batch_size):
# make sure all tokens fit into one block
context_len = i % (model_runner.block_size - 1) + 1
seq_data = SequenceData.from_seqs(range(context_len))
seq_data.append_token_id(1, 0)
seq_data.update_num_computed_tokens(context_len)
seq_group_metadata = SequenceGroupMetadata(
request_id=f"test_{i}",
is_prompt=False,
seq_data={0: seq_data},
sampling_params=SamplingParams(temperature=0),
block_tables={0: [1]},
)
assert seq_group_metadata.token_chunk_size == 1
seq_group_metadata_list.append(seq_group_metadata)
decode_metadata_list.append(seq_group_metadata)
model_input = model_runner.prepare_model_input(seq_group_metadata_list)
(input_tokens, input_positions, attn_metadata) = (
model_input.input_tokens,
model_input.input_positions,
model_input.attn_metadata,
)
prefill_meta_actual = attn_metadata.prefill_metadata
decode_meta_actual = attn_metadata.decode_metadata
assert len(attn_metadata.slot_mapping) == len(input_tokens)
assert len(input_positions) == len(input_tokens)
assert attn_metadata.num_prefills == prefill_batch_size
assert attn_metadata.num_decode_tokens == decode_batch_size
assert attn_metadata.num_prefill_tokens == sum(seq_lens)
# Verify attn metadata is consistent. We don't need to test individual
# values here because they are tested above.
attn_metadata = model_runner._prepare_model_input_tensors(
seq_group_metadata_list).attn_metadata
for attr_expected, attr_actual in zip(vars(attn_metadata.prefill_metadata),
vars(prefill_meta_actual)):
assert attr_expected[1] == attr_actual[1]
for attr_expected, attr_actual in zip(vars(attn_metadata.decode_metadata),
vars(decode_meta_actual)):
assert attr_expected[1] == attr_actual[1]