vllm/tests/weight_loading/test_weight_loading.py
Robert Shaw d4d93db2c5
[V1] V1 Enablement Oracle (#13726)
Signed-off-by: rshaw@neuralmagic.com <rshaw@neuralmagic.com>
Co-authored-by: rshaw@neuralmagic.com <rshaw@neuralmagic.com>
Co-authored-by: Nicolò Lucchesi <nlucches@redhat.com>
Co-authored-by: Tyler Michael Smith <tyler@neuralmagic.com>
Co-authored-by: Michael Goin <michael@neuralmagic.com>
2025-03-14 22:02:20 -07:00

43 lines
1.3 KiB
Python

# SPDX-License-Identifier: Apache-2.0
import os
import pytest
import torch
from vllm.platforms import current_platform
MAX_MODEL_LEN = 1024
MODEL_NAME = os.environ.get("MODEL_NAME",
"robertgshaw2/zephyr-7b-beta-channelwise-gptq")
REVISION = os.environ.get("REVISION", "main")
QUANTIZATION = os.environ.get("QUANTIZATION", "gptq_marlin")
MIN_CAPABILITY = os.environ.get("MIN_CAPABILITY", "80")
@pytest.mark.skipif(
MODEL_NAME == "casperhansen/deepseek-coder-v2-instruct-awq",
reason="OOM in the CI")
@pytest.mark.skipif(
not current_platform.has_device_capability(int(MIN_CAPABILITY)),
reason="Current system does not have minimum capability.")
def test_weight_loading(vllm_runner):
"""
Test parameter weight loading with tp>1.
"""
# MoE models need fp16.
NEEDS_FP16 = (QUANTIZATION == "gptq" or MODEL_NAME
== "nm-testing/test-w4a16-mixtral-actorder-group")
with vllm_runner(
model_name=MODEL_NAME,
revision=REVISION,
dtype=torch.half if NEEDS_FP16 else "auto",
quantization=None if QUANTIZATION == "None" else QUANTIZATION,
max_model_len=MAX_MODEL_LEN,
tensor_parallel_size=2) as model:
output = model.generate_greedy("Hello world!", max_tokens=20)
print(output)
assert output