2025-03-02 17:34:51 -08:00

290 lines
9.6 KiB
Python

# SPDX-License-Identifier: Apache-2.0
from collections.abc import Sequence as GenericSequence
from itertools import count
from typing import Callable, Optional, TypeVar, Union
from unittest.mock import MagicMock
import torch
from vllm.engine.arg_utils import EngineArgs
from vllm.model_executor.layers.sampler import SamplerOutput
from vllm.model_executor.utils import set_random_seed
from vllm.sampling_params import SamplingParams
from vllm.sequence import (CompletionSequenceGroupOutput, Logprob,
SequenceData, SequenceGroupMetadata, SequenceOutput)
from vllm.utils import get_distributed_init_method, get_ip, get_open_port
from vllm.worker.cache_engine import CacheEngine
from vllm.worker.model_runner import ModelRunner
from vllm.worker.worker import Worker
T = TypeVar("T", bound=Worker)
def round_up_to_next_block(seq_len: int, block_size: int) -> int:
return (seq_len + block_size - 1) // block_size
def mock_worker(cls=None,
vocab_size: int = 30_000,
max_model_len: int = 2048,
rank: int = 0,
use_spec: bool = True) -> MagicMock:
if cls is None:
cls = Worker
spec = cls if use_spec else None
worker = MagicMock(spec=spec)
worker.vocab_size = vocab_size
worker.max_model_len = max_model_len
worker.rank = rank
worker.device = 'cuda:0'
return worker
def patch_execute_model_with_seeds(worker: Worker, rand_seeds: list[int]):
seed_iter = iter(rand_seeds)
original_execute_model = worker.execute_model
def new_execute_model(*args, **kwargs):
result = original_execute_model(*args, **kwargs)
set_random_seed(next(seed_iter))
return result
return new_execute_model
def zero_kv_cache(cache_engine: list[CacheEngine]):
assert cache_engine[0].gpu_cache
for key_blocks, value_blocks in cache_engine[0].gpu_cache:
key_blocks.zero_()
value_blocks.zero_()
def create_worker(cls: Callable[..., T],
model_name: str,
block_size: int,
num_gpu_blocks: int,
seed: int,
is_driver_worker: bool = True,
enforce_eager: bool = True,
model_runner_cls: Optional[ModelRunner] = None,
dtype: Optional[str] = "auto") -> T:
engine_args = EngineArgs(
model=model_name,
seed=seed,
block_size=block_size,
enforce_eager=enforce_eager,
dtype=dtype,
)
engine_config = engine_args.create_engine_config()
distributed_init_method = get_distributed_init_method(
get_ip(), get_open_port())
worker = cls(
vllm_config=engine_config,
local_rank=0,
rank=0,
distributed_init_method=distributed_init_method,
is_driver_worker=is_driver_worker,
model_runner_cls=model_runner_cls,
)
worker.init_device()
worker.load_model()
engine_config.cache_config.num_gpu_blocks = num_gpu_blocks
engine_config.cache_config.num_cpu_blocks = 0
worker.initialize_cache(
num_gpu_blocks=engine_config.cache_config.num_gpu_blocks,
num_cpu_blocks=engine_config.cache_config.num_cpu_blocks)
return worker
def create_seq_group_metadata_from_prompts(
prompts: list[list[int]],
num_gpu_blocks: int,
block_size: int,
final_prompt_lens: list[int],
continuations: Optional[list[list[int]]] = None,
seq_ids: Optional[list[int]] = None,
) -> list[SequenceGroupMetadata]:
if continuations is None:
continuations = [[] for _ in prompts]
if seq_ids is None:
seq_ids = list(i for i, _ in enumerate(prompts))
free_gpu_blocks = list(range(num_gpu_blocks))
block_allocations = {
i: [
free_gpu_blocks.pop()
for _ in range(round_up_to_next_block(final_len, block_size))
]
for i, final_len in enumerate(final_prompt_lens)
}
seq_grou_metadata_list = []
for i, (prompt_token_ids,
cont_token_ids) in enumerate(zip(prompts, continuations)):
data = SequenceData.from_seqs(prompt_token_ids, cont_token_ids)
data.update_num_computed_tokens(
len(prompt_token_ids) + len(cont_token_ids) - 1)
seq_data = {i: data}
seq_grou_metadata_list.append(
SequenceGroupMetadata(
request_id=str(i),
is_prompt=len(cont_token_ids) == 0,
seq_data=seq_data,
sampling_params=SamplingParams(temperature=0.0),
block_tables={i: block_allocations[i][:]},
))
return seq_grou_metadata_list
def create_chunked_seq_group_metadata_from_prompt(
prompt: list[int],
num_gpu_blocks: int,
chunk_size: int,
block_size: int,
seq_id: Optional[int] = None) -> list[SequenceGroupMetadata]:
if seq_id is None:
seq_id = 0
free_gpu_blocks = list(range(num_gpu_blocks))
block_allocations = [
free_gpu_blocks.pop()
for _ in range(round_up_to_next_block(len(prompt), block_size))
]
seq_group_metadata_list = []
for i, idx in enumerate(range(0, len(prompt), chunk_size)):
chunk_ids = prompt[idx:idx + chunk_size]
data = SequenceData.from_seqs(prompt)
data.update_num_computed_tokens(idx)
seq_data = {i: data}
seq_group_metadata_list.append(
SequenceGroupMetadata(
request_id=str(seq_id),
is_prompt=True,
do_sample=idx + chunk_size >= len(prompt), # terminal chunk
seq_data=seq_data,
sampling_params=SamplingParams(temperature=0.0),
block_tables={i: block_allocations},
token_chunk_size=len(chunk_ids)))
return seq_group_metadata_list
def assert_logprobs_dict_allclose(
actual_logprobs: list[dict[int, Logprob]],
expected_logprobs: list[dict[int, Logprob]]) -> None:
for single_step_actual_logprobs, single_step_expected_logprobs in zip(
actual_logprobs, expected_logprobs):
assert set(single_step_actual_logprobs.keys()) == set(
single_step_expected_logprobs.keys())
for token_id in single_step_actual_logprobs:
actual = torch.tensor(
single_step_actual_logprobs[token_id].logprob)
expected = torch.tensor(
single_step_expected_logprobs[token_id].logprob)
torch.testing.assert_close(actual, expected)
def create_sampler_output_list(
token_ids: torch.Tensor,
probs: GenericSequence[Optional[torch.Tensor]],
logprobs: GenericSequence[Optional[torch.Tensor]],
seq_ids: Optional[list[int]] = None) -> list[SamplerOutput]:
num_steps, batch_size = token_ids.shape
token_ids_by_step = token_ids.tolist()
if seq_ids is None:
seq_ids = list(range(batch_size))
return [
SamplerOutput(outputs=[
CompletionSequenceGroupOutput(
samples=[
SequenceOutput(
output_token=token_id,
parent_seq_id=seq_ids[seq_index],
logprobs={token_id: Logprob(0)},
)
],
prompt_logprobs=None,
) for seq_index, token_id in enumerate(token_ids_by_step[step])
],
sampled_token_probs=probs[step],
logprobs=logprobs[step],
sampled_token_ids=token_ids[step])
for step in range(num_steps)
]
def create_batch(batch_size,
k,
prompt_len: Union[int, list[int]] = 10,
prev_output_token_len: int = 10,
seq_ids: Optional[list[int]] = None,
num_gpu_blocks: Optional[int] = None,
block_size: Optional[int] = None,
prefill_chunk_size: Optional[int] = None):
if block_size is None:
block_size = 8
if num_gpu_blocks is None:
num_gpu_blocks = 2048 // block_size
iterator = count()
if isinstance(prompt_len, int):
prompt_lens = [prompt_len for _ in range(batch_size)]
else:
prompt_lens = prompt_len
prompts = [[next(iterator) for _ in range(p_len)] for p_len in prompt_lens]
if prefill_chunk_size:
# Create a batch of chunked prompts.
if not seq_ids:
seq_ids = list(range(len(prompts)))
seq_group_metadata_list = []
for p, sid in zip(prompts, seq_ids):
seq_group_metadata_list += \
create_chunked_seq_group_metadata_from_prompt(
p, num_gpu_blocks, prefill_chunk_size, block_size, sid)
seq_group_metadata_list = seq_group_metadata_list[:batch_size]
prev_output_tokens = []
else:
prev_output_tokens = [[
next(iterator) for _ in range(prev_output_token_len)
] for _ in range(batch_size)]
final_prompt_lens = [
len(prompt) + len(prev_output_token) + k + 1
for prompt, prev_output_token in zip(prompts, prev_output_tokens)
]
seq_group_metadata_list = create_seq_group_metadata_from_prompts(
prompts, num_gpu_blocks, block_size, final_prompt_lens,
prev_output_tokens, seq_ids)
return seq_group_metadata_list, prompts, prev_output_tokens
def maybe_enable_chunked_prefill(prefill_chunk_size, llm_kwargs):
if prefill_chunk_size > 0:
llm_kwargs.update(
**{
"enable_chunked_prefill": True,
"max_num_batched_tokens": prefill_chunk_size,
"max_num_seqs": prefill_chunk_size
})
else:
llm_kwargs["enable_chunked_prefill"] = False