vllm/tests/lora/test_minicpmv_tp.py
Jee Jee Li 1575c1701a
[CI/Build] Fix LoRA OOM (#16624)
Signed-off-by: Jee Jee Li <pandaleefree@gmail.com>
2025-04-15 16:38:19 +08:00

136 lines
4.1 KiB
Python

# SPDX-License-Identifier: Apache-2.0
import pytest
import vllm
from vllm.assets.image import ImageAsset
from vllm.lora.request import LoRARequest
from vllm.platforms import current_platform
from ..utils import create_new_process_for_each_test
MODEL_PATH = "openbmb/MiniCPM-Llama3-V-2_5"
PROMPT_TEMPLATE = (
"<|begin_of_text|><|start_header_id|>user<|end_header_id|>\n\n"
"(<image>./</image>)\nWhat is in the image?<|eot_id|>"
"<|start_header_id|>assistant<|end_header_id|>\n\n")
IMAGE_ASSETS = [
ImageAsset("stop_sign"),
]
# After fine-tuning with LoRA, all generated content should start begin `A`.
EXPECTED_OUTPUT = [
"A red and white stop sign with a Chinese archway in the background featuring red lanterns and gold accents.", # noqa: E501
]
def do_sample(llm: vllm.LLM, lora_path: str, lora_id: int) -> list[str]:
sampling_params = vllm.SamplingParams(
temperature=0,
max_tokens=5,
stop_token_ids=[128001, 128009], # eos_id, eot_id
)
inputs = [{
"prompt": PROMPT_TEMPLATE,
"multi_modal_data": {
"image": asset.pil_image
},
} for asset in IMAGE_ASSETS]
outputs = llm.generate(
inputs,
sampling_params,
lora_request=LoRARequest(str(lora_id), lora_id, lora_path)
if lora_id else None,
)
# Print the outputs.
generated_texts: list[str] = []
for output in outputs:
generated_text = output.outputs[0].text.strip()
generated_texts.append(generated_text)
print(f"Generated text: {generated_text!r}")
return generated_texts
@pytest.mark.xfail(
current_platform.is_rocm(),
reason="MiniCPM-V dependency xformers incompatible with ROCm")
def test_minicpmv_lora(minicpmv_lora_files):
llm = vllm.LLM(
MODEL_PATH,
max_num_seqs=2,
enable_lora=True,
max_loras=2,
max_lora_rank=8,
enforce_eager=True,
max_model_len=2048,
limit_mm_per_prompt={
"image": 2,
"video": 0
},
trust_remote_code=True,
)
output1 = do_sample(llm, minicpmv_lora_files, lora_id=1)
for i in range(len(EXPECTED_OUTPUT)):
assert EXPECTED_OUTPUT[i].startswith(output1[i])
output2 = do_sample(llm, minicpmv_lora_files, lora_id=2)
for i in range(len(EXPECTED_OUTPUT)):
assert EXPECTED_OUTPUT[i].startswith(output2[i])
@pytest.mark.skipif(current_platform.is_cuda_alike(),
reason="Skipping to avoid redundant model tests")
@pytest.mark.xfail(
current_platform.is_rocm(),
reason="MiniCPM-V dependency xformers incompatible with ROCm")
@create_new_process_for_each_test()
def test_minicpmv_tp4_wo_fully_sharded_loras(minicpmv_lora_files):
llm = vllm.LLM(
MODEL_PATH,
enable_lora=True,
max_num_seqs=2,
max_loras=4,
max_lora_rank=64,
tensor_parallel_size=4,
limit_mm_per_prompt={
"image": 2,
"video": 0
},
trust_remote_code=True,
)
output_tp = do_sample(llm, minicpmv_lora_files, lora_id=1)
for i in range(len(EXPECTED_OUTPUT)):
assert EXPECTED_OUTPUT[i].startswith(output_tp[i])
@pytest.mark.skipif(current_platform.is_cuda_alike(),
reason="Skipping to avoid redundant model tests")
@pytest.mark.xfail(
current_platform.is_rocm(),
reason="MiniCPM-V dependency xformers incompatible with ROCm")
@create_new_process_for_each_test()
def test_minicpmv_tp4_fully_sharded_loras(minicpmv_lora_files):
llm = vllm.LLM(
MODEL_PATH,
enable_lora=True,
max_num_seqs=2,
max_loras=2,
max_lora_rank=8,
tensor_parallel_size=4,
trust_remote_code=True,
limit_mm_per_prompt={
"image": 1,
"video": 0
},
fully_sharded_loras=True,
)
output_tp = do_sample(llm, minicpmv_lora_files, lora_id=1)
for i in range(len(EXPECTED_OUTPUT)):
assert EXPECTED_OUTPUT[i].startswith(output_tp[i])
output_tp = do_sample(llm, minicpmv_lora_files, lora_id=2)
for i in range(len(EXPECTED_OUTPUT)):
assert EXPECTED_OUTPUT[i].startswith(output_tp[i])