136 lines
4.1 KiB
Python
136 lines
4.1 KiB
Python
# SPDX-License-Identifier: Apache-2.0
|
|
|
|
import pytest
|
|
|
|
import vllm
|
|
from vllm.assets.image import ImageAsset
|
|
from vllm.lora.request import LoRARequest
|
|
from vllm.platforms import current_platform
|
|
|
|
from ..utils import create_new_process_for_each_test
|
|
|
|
MODEL_PATH = "openbmb/MiniCPM-Llama3-V-2_5"
|
|
|
|
PROMPT_TEMPLATE = (
|
|
"<|begin_of_text|><|start_header_id|>user<|end_header_id|>\n\n"
|
|
"(<image>./</image>)\nWhat is in the image?<|eot_id|>"
|
|
"<|start_header_id|>assistant<|end_header_id|>\n\n")
|
|
|
|
IMAGE_ASSETS = [
|
|
ImageAsset("stop_sign"),
|
|
]
|
|
|
|
# After fine-tuning with LoRA, all generated content should start begin `A`.
|
|
EXPECTED_OUTPUT = [
|
|
"A red and white stop sign with a Chinese archway in the background featuring red lanterns and gold accents.", # noqa: E501
|
|
]
|
|
|
|
|
|
def do_sample(llm: vllm.LLM, lora_path: str, lora_id: int) -> list[str]:
|
|
sampling_params = vllm.SamplingParams(
|
|
temperature=0,
|
|
max_tokens=5,
|
|
stop_token_ids=[128001, 128009], # eos_id, eot_id
|
|
)
|
|
|
|
inputs = [{
|
|
"prompt": PROMPT_TEMPLATE,
|
|
"multi_modal_data": {
|
|
"image": asset.pil_image
|
|
},
|
|
} for asset in IMAGE_ASSETS]
|
|
|
|
outputs = llm.generate(
|
|
inputs,
|
|
sampling_params,
|
|
lora_request=LoRARequest(str(lora_id), lora_id, lora_path)
|
|
if lora_id else None,
|
|
)
|
|
# Print the outputs.
|
|
generated_texts: list[str] = []
|
|
for output in outputs:
|
|
generated_text = output.outputs[0].text.strip()
|
|
generated_texts.append(generated_text)
|
|
print(f"Generated text: {generated_text!r}")
|
|
return generated_texts
|
|
|
|
|
|
@pytest.mark.xfail(
|
|
current_platform.is_rocm(),
|
|
reason="MiniCPM-V dependency xformers incompatible with ROCm")
|
|
def test_minicpmv_lora(minicpmv_lora_files):
|
|
llm = vllm.LLM(
|
|
MODEL_PATH,
|
|
max_num_seqs=2,
|
|
enable_lora=True,
|
|
max_loras=2,
|
|
max_lora_rank=8,
|
|
enforce_eager=True,
|
|
max_model_len=2048,
|
|
limit_mm_per_prompt={
|
|
"image": 2,
|
|
"video": 0
|
|
},
|
|
trust_remote_code=True,
|
|
)
|
|
output1 = do_sample(llm, minicpmv_lora_files, lora_id=1)
|
|
for i in range(len(EXPECTED_OUTPUT)):
|
|
assert EXPECTED_OUTPUT[i].startswith(output1[i])
|
|
output2 = do_sample(llm, minicpmv_lora_files, lora_id=2)
|
|
for i in range(len(EXPECTED_OUTPUT)):
|
|
assert EXPECTED_OUTPUT[i].startswith(output2[i])
|
|
|
|
|
|
@pytest.mark.skipif(current_platform.is_cuda_alike(),
|
|
reason="Skipping to avoid redundant model tests")
|
|
@pytest.mark.xfail(
|
|
current_platform.is_rocm(),
|
|
reason="MiniCPM-V dependency xformers incompatible with ROCm")
|
|
@create_new_process_for_each_test()
|
|
def test_minicpmv_tp4_wo_fully_sharded_loras(minicpmv_lora_files):
|
|
llm = vllm.LLM(
|
|
MODEL_PATH,
|
|
enable_lora=True,
|
|
max_num_seqs=2,
|
|
max_loras=4,
|
|
max_lora_rank=64,
|
|
tensor_parallel_size=4,
|
|
limit_mm_per_prompt={
|
|
"image": 2,
|
|
"video": 0
|
|
},
|
|
trust_remote_code=True,
|
|
)
|
|
output_tp = do_sample(llm, minicpmv_lora_files, lora_id=1)
|
|
for i in range(len(EXPECTED_OUTPUT)):
|
|
assert EXPECTED_OUTPUT[i].startswith(output_tp[i])
|
|
|
|
|
|
@pytest.mark.skipif(current_platform.is_cuda_alike(),
|
|
reason="Skipping to avoid redundant model tests")
|
|
@pytest.mark.xfail(
|
|
current_platform.is_rocm(),
|
|
reason="MiniCPM-V dependency xformers incompatible with ROCm")
|
|
@create_new_process_for_each_test()
|
|
def test_minicpmv_tp4_fully_sharded_loras(minicpmv_lora_files):
|
|
llm = vllm.LLM(
|
|
MODEL_PATH,
|
|
enable_lora=True,
|
|
max_num_seqs=2,
|
|
max_loras=2,
|
|
max_lora_rank=8,
|
|
tensor_parallel_size=4,
|
|
trust_remote_code=True,
|
|
limit_mm_per_prompt={
|
|
"image": 1,
|
|
"video": 0
|
|
},
|
|
fully_sharded_loras=True,
|
|
)
|
|
output_tp = do_sample(llm, minicpmv_lora_files, lora_id=1)
|
|
for i in range(len(EXPECTED_OUTPUT)):
|
|
assert EXPECTED_OUTPUT[i].startswith(output_tp[i])
|
|
output_tp = do_sample(llm, minicpmv_lora_files, lora_id=2)
|
|
for i in range(len(EXPECTED_OUTPUT)):
|
|
assert EXPECTED_OUTPUT[i].startswith(output_tp[i])
|