
- **Add SPDX license headers to python source files** - **Check for SPDX headers using pre-commit** commit 9d7ef44c3cfb72ca4c32e1c677d99259d10d4745 Author: Russell Bryant <rbryant@redhat.com> Date: Fri Jan 31 14:18:24 2025 -0500 Add SPDX license headers to python source files This commit adds SPDX license headers to python source files as recommended to the project by the Linux Foundation. These headers provide a concise way that is both human and machine readable for communicating license information for each source file. It helps avoid any ambiguity about the license of the code and can also be easily used by tools to help manage license compliance. The Linux Foundation runs license scans against the codebase to help ensure we are in compliance with the licenses of the code we use, including dependencies. Having these headers in place helps that tool do its job. More information can be found on the SPDX site: - https://spdx.dev/learn/handling-license-info/ Signed-off-by: Russell Bryant <rbryant@redhat.com> commit 5a1cf1cb3b80759131c73f6a9dddebccac039dea Author: Russell Bryant <rbryant@redhat.com> Date: Fri Jan 31 14:36:32 2025 -0500 Check for SPDX headers using pre-commit Signed-off-by: Russell Bryant <rbryant@redhat.com> --------- Signed-off-by: Russell Bryant <rbryant@redhat.com>
137 lines
5.0 KiB
Python
137 lines
5.0 KiB
Python
# SPDX-License-Identifier: Apache-2.0
|
|
|
|
import pytest
|
|
import torch
|
|
|
|
from tests.kernels.quant_utils import FP8_DTYPE
|
|
from tests.kernels.utils import opcheck
|
|
from vllm.model_executor.layers.layernorm import RMSNorm
|
|
from vllm.platforms import current_platform
|
|
|
|
DTYPES = [torch.half, torch.bfloat16, torch.float]
|
|
NUM_TOKENS = [7, 83, 4096] # Arbitrary values for testing
|
|
HIDDEN_SIZES = [8, 768, 769, 770, 771, 5120, 5124, 5125, 5126, 8192,
|
|
8199] # Arbitrary values for testing
|
|
ADD_RESIDUAL = [False, True]
|
|
SEEDS = [0]
|
|
CUDA_DEVICES = [
|
|
f"cuda:{i}" for i in range(1 if torch.cuda.device_count() == 1 else 2)
|
|
]
|
|
|
|
|
|
@pytest.mark.parametrize("num_tokens", NUM_TOKENS)
|
|
@pytest.mark.parametrize("hidden_size", HIDDEN_SIZES)
|
|
@pytest.mark.parametrize("add_residual", ADD_RESIDUAL)
|
|
@pytest.mark.parametrize("dtype", DTYPES)
|
|
@pytest.mark.parametrize("seed", SEEDS)
|
|
@pytest.mark.parametrize("device", CUDA_DEVICES)
|
|
@torch.inference_mode()
|
|
def test_rms_norm(
|
|
num_tokens: int,
|
|
hidden_size: int,
|
|
add_residual: bool,
|
|
dtype: torch.dtype,
|
|
seed: int,
|
|
device: str,
|
|
) -> None:
|
|
current_platform.seed_everything(seed)
|
|
torch.set_default_device(device)
|
|
layer = RMSNorm(hidden_size).to(dtype=dtype)
|
|
layer.weight.data.normal_(mean=1.0, std=0.1)
|
|
scale = 1 / (2 * hidden_size)
|
|
x = torch.randn(num_tokens, hidden_size, dtype=dtype)
|
|
x *= scale
|
|
residual = torch.randn_like(x) * scale if add_residual else None
|
|
|
|
# NOTE(woosuk): The reference implementation should be executed first
|
|
# because the custom kernel is in-place.
|
|
ref_out = layer.forward_native(x, residual)
|
|
out = layer(x, residual)
|
|
# NOTE(woosuk): LayerNorm operators (including RMS) typically have larger
|
|
# numerical errors than other operators because they involve reductions.
|
|
# Therefore, we use a larger tolerance.
|
|
if add_residual:
|
|
torch.testing.assert_close(out[0], ref_out[0], atol=1e-2, rtol=1e-2)
|
|
torch.testing.assert_close(out[1], ref_out[1], atol=1e-2, rtol=1e-2)
|
|
else:
|
|
torch.testing.assert_close(out, ref_out, atol=1e-2, rtol=1e-2)
|
|
|
|
if residual is not None:
|
|
opcheck(torch.ops._C.fused_add_rms_norm,
|
|
(x, residual, layer.weight.data, layer.variance_epsilon))
|
|
else:
|
|
opcheck(torch.ops._C.rms_norm,
|
|
(out, x, layer.weight.data, layer.variance_epsilon))
|
|
|
|
|
|
@pytest.mark.parametrize("num_tokens", NUM_TOKENS)
|
|
@pytest.mark.parametrize("hidden_size", HIDDEN_SIZES)
|
|
@pytest.mark.parametrize("add_residual", ADD_RESIDUAL)
|
|
@pytest.mark.parametrize("dtype", DTYPES)
|
|
@pytest.mark.parametrize("quant_scale", [1.0, 0.01, 10.0])
|
|
@pytest.mark.parametrize("seed", SEEDS)
|
|
@pytest.mark.parametrize("device", CUDA_DEVICES)
|
|
def test_fused_rms_norm_quant(
|
|
num_tokens: int,
|
|
hidden_size: int,
|
|
add_residual: bool,
|
|
dtype: torch.dtype,
|
|
quant_scale: float,
|
|
seed: int,
|
|
device: str,
|
|
) -> None:
|
|
current_platform.seed_everything(seed)
|
|
torch.set_default_device(device)
|
|
|
|
weight = torch.empty(hidden_size, dtype=dtype).normal_(mean=1.0, std=0.1)
|
|
scale = 1 / (2 * hidden_size)
|
|
x = torch.randn(num_tokens, hidden_size, dtype=dtype)
|
|
x *= scale
|
|
if add_residual:
|
|
residual = torch.randn_like(x) * scale
|
|
residual_fused = residual.clone()
|
|
else:
|
|
residual = residual_fused = None
|
|
|
|
out_norm = torch.empty_like(x)
|
|
out_quant = torch.empty_like(x, dtype=FP8_DTYPE)
|
|
out_quant_fused = torch.empty_like(out_quant)
|
|
|
|
quant_scale_t = torch.tensor(quant_scale, dtype=torch.float32)
|
|
|
|
if add_residual:
|
|
torch.ops._C.fused_add_rms_norm_static_fp8_quant(
|
|
out_quant_fused, x, residual_fused, weight, quant_scale_t, 1e-6)
|
|
|
|
# Unfused kernel is in-place so it goes second
|
|
# Also use a separate clone of x to avoid modifying the input
|
|
x_unfused = x.clone()
|
|
torch.ops._C.fused_add_rms_norm(x_unfused, residual, weight, 1e-6)
|
|
torch.ops._C.static_scaled_fp8_quant(out_quant, x_unfused,
|
|
quant_scale_t)
|
|
|
|
torch.cuda.synchronize()
|
|
torch.testing.assert_close(residual_fused,
|
|
residual,
|
|
atol=1e-2,
|
|
rtol=1e-2)
|
|
|
|
opcheck(
|
|
torch.ops._C.fused_add_rms_norm_static_fp8_quant,
|
|
(out_quant_fused, x, residual_fused, weight, quant_scale_t, 1e-6))
|
|
else:
|
|
torch.ops._C.rms_norm_static_fp8_quant(out_quant_fused, x, weight,
|
|
quant_scale_t, 1e-6)
|
|
|
|
torch.ops._C.rms_norm(out_norm, x, weight, 1e-6)
|
|
torch.ops._C.static_scaled_fp8_quant(out_quant, out_norm,
|
|
quant_scale_t)
|
|
|
|
opcheck(torch.ops._C.rms_norm_static_fp8_quant,
|
|
(out_quant_fused, x, weight, quant_scale_t, 1e-6))
|
|
|
|
torch.testing.assert_close(out_quant_fused.to(dtype=torch.float32),
|
|
out_quant.to(dtype=torch.float32),
|
|
atol=1e-3,
|
|
rtol=1e-3)
|