vllm/tests/kernels/test_layernorm.py
Russell Bryant e489ad7a21
[Misc] Add SPDX-License-Identifier headers to python source files (#12628)
- **Add SPDX license headers to python source files**
- **Check for SPDX headers using pre-commit**

commit 9d7ef44c3cfb72ca4c32e1c677d99259d10d4745
Author: Russell Bryant <rbryant@redhat.com>
Date:   Fri Jan 31 14:18:24 2025 -0500

    Add SPDX license headers to python source files
    
This commit adds SPDX license headers to python source files as
recommended to
the project by the Linux Foundation. These headers provide a concise way
that is
both human and machine readable for communicating license information
for each
source file. It helps avoid any ambiguity about the license of the code
and can
    also be easily used by tools to help manage license compliance.
    
The Linux Foundation runs license scans against the codebase to help
ensure
    we are in compliance with the licenses of the code we use, including
dependencies. Having these headers in place helps that tool do its job.
    
    More information can be found on the SPDX site:
    
    - https://spdx.dev/learn/handling-license-info/
    
    Signed-off-by: Russell Bryant <rbryant@redhat.com>

commit 5a1cf1cb3b80759131c73f6a9dddebccac039dea
Author: Russell Bryant <rbryant@redhat.com>
Date:   Fri Jan 31 14:36:32 2025 -0500

    Check for SPDX headers using pre-commit
    
    Signed-off-by: Russell Bryant <rbryant@redhat.com>

---------

Signed-off-by: Russell Bryant <rbryant@redhat.com>
2025-02-02 11:58:18 -08:00

137 lines
5.0 KiB
Python

# SPDX-License-Identifier: Apache-2.0
import pytest
import torch
from tests.kernels.quant_utils import FP8_DTYPE
from tests.kernels.utils import opcheck
from vllm.model_executor.layers.layernorm import RMSNorm
from vllm.platforms import current_platform
DTYPES = [torch.half, torch.bfloat16, torch.float]
NUM_TOKENS = [7, 83, 4096] # Arbitrary values for testing
HIDDEN_SIZES = [8, 768, 769, 770, 771, 5120, 5124, 5125, 5126, 8192,
8199] # Arbitrary values for testing
ADD_RESIDUAL = [False, True]
SEEDS = [0]
CUDA_DEVICES = [
f"cuda:{i}" for i in range(1 if torch.cuda.device_count() == 1 else 2)
]
@pytest.mark.parametrize("num_tokens", NUM_TOKENS)
@pytest.mark.parametrize("hidden_size", HIDDEN_SIZES)
@pytest.mark.parametrize("add_residual", ADD_RESIDUAL)
@pytest.mark.parametrize("dtype", DTYPES)
@pytest.mark.parametrize("seed", SEEDS)
@pytest.mark.parametrize("device", CUDA_DEVICES)
@torch.inference_mode()
def test_rms_norm(
num_tokens: int,
hidden_size: int,
add_residual: bool,
dtype: torch.dtype,
seed: int,
device: str,
) -> None:
current_platform.seed_everything(seed)
torch.set_default_device(device)
layer = RMSNorm(hidden_size).to(dtype=dtype)
layer.weight.data.normal_(mean=1.0, std=0.1)
scale = 1 / (2 * hidden_size)
x = torch.randn(num_tokens, hidden_size, dtype=dtype)
x *= scale
residual = torch.randn_like(x) * scale if add_residual else None
# NOTE(woosuk): The reference implementation should be executed first
# because the custom kernel is in-place.
ref_out = layer.forward_native(x, residual)
out = layer(x, residual)
# NOTE(woosuk): LayerNorm operators (including RMS) typically have larger
# numerical errors than other operators because they involve reductions.
# Therefore, we use a larger tolerance.
if add_residual:
torch.testing.assert_close(out[0], ref_out[0], atol=1e-2, rtol=1e-2)
torch.testing.assert_close(out[1], ref_out[1], atol=1e-2, rtol=1e-2)
else:
torch.testing.assert_close(out, ref_out, atol=1e-2, rtol=1e-2)
if residual is not None:
opcheck(torch.ops._C.fused_add_rms_norm,
(x, residual, layer.weight.data, layer.variance_epsilon))
else:
opcheck(torch.ops._C.rms_norm,
(out, x, layer.weight.data, layer.variance_epsilon))
@pytest.mark.parametrize("num_tokens", NUM_TOKENS)
@pytest.mark.parametrize("hidden_size", HIDDEN_SIZES)
@pytest.mark.parametrize("add_residual", ADD_RESIDUAL)
@pytest.mark.parametrize("dtype", DTYPES)
@pytest.mark.parametrize("quant_scale", [1.0, 0.01, 10.0])
@pytest.mark.parametrize("seed", SEEDS)
@pytest.mark.parametrize("device", CUDA_DEVICES)
def test_fused_rms_norm_quant(
num_tokens: int,
hidden_size: int,
add_residual: bool,
dtype: torch.dtype,
quant_scale: float,
seed: int,
device: str,
) -> None:
current_platform.seed_everything(seed)
torch.set_default_device(device)
weight = torch.empty(hidden_size, dtype=dtype).normal_(mean=1.0, std=0.1)
scale = 1 / (2 * hidden_size)
x = torch.randn(num_tokens, hidden_size, dtype=dtype)
x *= scale
if add_residual:
residual = torch.randn_like(x) * scale
residual_fused = residual.clone()
else:
residual = residual_fused = None
out_norm = torch.empty_like(x)
out_quant = torch.empty_like(x, dtype=FP8_DTYPE)
out_quant_fused = torch.empty_like(out_quant)
quant_scale_t = torch.tensor(quant_scale, dtype=torch.float32)
if add_residual:
torch.ops._C.fused_add_rms_norm_static_fp8_quant(
out_quant_fused, x, residual_fused, weight, quant_scale_t, 1e-6)
# Unfused kernel is in-place so it goes second
# Also use a separate clone of x to avoid modifying the input
x_unfused = x.clone()
torch.ops._C.fused_add_rms_norm(x_unfused, residual, weight, 1e-6)
torch.ops._C.static_scaled_fp8_quant(out_quant, x_unfused,
quant_scale_t)
torch.cuda.synchronize()
torch.testing.assert_close(residual_fused,
residual,
atol=1e-2,
rtol=1e-2)
opcheck(
torch.ops._C.fused_add_rms_norm_static_fp8_quant,
(out_quant_fused, x, residual_fused, weight, quant_scale_t, 1e-6))
else:
torch.ops._C.rms_norm_static_fp8_quant(out_quant_fused, x, weight,
quant_scale_t, 1e-6)
torch.ops._C.rms_norm(out_norm, x, weight, 1e-6)
torch.ops._C.static_scaled_fp8_quant(out_quant, out_norm,
quant_scale_t)
opcheck(torch.ops._C.rms_norm_static_fp8_quant,
(out_quant_fused, x, weight, quant_scale_t, 1e-6))
torch.testing.assert_close(out_quant_fused.to(dtype=torch.float32),
out_quant.to(dtype=torch.float32),
atol=1e-3,
rtol=1e-3)