vllm/tests/kernels/test_int8_kernel.py
2025-04-11 17:54:08 +00:00

150 lines
5.1 KiB
Python

# SPDX-License-Identifier: Apache-2.0
# Adapted from https://github.com/sgl-project/sglang/blob/main/test/srt/test_int8_kernel.py
import itertools
import pytest
import torch
from vllm.model_executor.layers.activation import SiluAndMul
from vllm.model_executor.layers.fused_moe import fused_moe
from vllm.model_executor.layers.quantization.utils.int8_utils import (
per_token_quant_int8)
from vllm.platforms import current_platform
if current_platform.get_device_capability() < (7, 0):
pytest.skip("INT8 Triton requires CUDA 7.0 or higher",
allow_module_level=True)
def native_w8a8_per_token_matmul(A, B, As, Bs, output_dtype=torch.float16):
"""Matrix multiplication function that supports per-token input
quantization and per-column weight quantization"""
A = A.to(torch.float32)
B = B.to(torch.float32)
assert A.shape[-1] == B.shape[-1], "Dimension mismatch"
assert B.ndim == 2 and B.is_contiguous(
), "B must be a 2D contiguous tensor"
# Reshape input
M = A.numel() // A.shape[-1]
B = B.t() # Transpose weight matrix
N, K = B.shape
origin_C_shape = A.shape[:-1] + (K, )
A = A.reshape(M, N)
# As is per-token [M, 1], Bs is per-column [1, K]
C = torch.matmul(A, B) # [M, K]
C = As * C * Bs.view(1, -1) # Broadcast per-column scale
return C.reshape(origin_C_shape).to(output_dtype)
def torch_w8a8_per_column_moe(a, w1, w2, w1_s, w2_s, score, topk):
"""This function performs fused moe with per-column int8 quantization
using native torch."""
B, D = a.shape
# Perform per-token quantization
a_q, a_s = per_token_quant_int8(a)
# Repeat tokens to match topk
a_q = a_q.view(B, -1, D).repeat(1, topk, 1).reshape(-1, D)
# Also repeat the scale
a_s = a_s.view(B, -1, 1).repeat(1, topk, 1).reshape(-1, 1) # [B*topk, 1]
out = torch.zeros(B * topk, w2.shape[1], dtype=a.dtype, device=a.device)
# Calculate routing
score = torch.softmax(score, dim=-1, dtype=torch.float32)
topk_weight, topk_ids = torch.topk(score, topk)
topk_weight = topk_weight.view(-1)
topk_ids = topk_ids.view(-1)
# Process each expert
for i in range(w1.shape[0]):
mask = topk_ids == i
if mask.sum():
# First MLP layer: note that a_s is now per-token
inter_out = native_w8a8_per_token_matmul(a_q[mask],
w1[i],
a_s[mask],
w1_s[i],
output_dtype=a.dtype)
# Activation function
act_out = SiluAndMul().forward_native(inter_out)
# Quantize activation output with per-token
act_out_q, act_out_s = per_token_quant_int8(act_out)
# Second MLP layer
out[mask] = native_w8a8_per_token_matmul(act_out_q,
w2[i],
act_out_s,
w2_s[i],
output_dtype=a.dtype)
# Apply routing weights and sum
return (out.view(B, -1, w2.shape[1]) *
topk_weight.view(B, -1, 1).to(out.dtype)).sum(dim=1)
@pytest.fixture(autouse=True, scope="module")
def setup_cuda():
"""Sets the default CUDA device for all tests in this module."""
torch.set_default_device("cuda")
DTYPES = [torch.half, torch.bfloat16]
M = [1, 33]
N = [128, 1024]
K = [256, 4096]
E = [8]
TOP_KS = [2, 6]
SEEDS = [0]
@pytest.mark.parametrize("M, N, K, E, topk, dtype, seed",
itertools.product(M, N, K, E, TOP_KS, DTYPES, SEEDS))
@torch.inference_mode()
def test_w8a8_fp8_fused_moe(M, N, K, E, topk, dtype, seed):
torch.manual_seed(seed)
# Initialize int8 quantization parameters
factor_for_scale = 1e-2
int8_max = 127
int8_min = -128
# Input tensor
# M * K
a = torch.randn((M, K), dtype=dtype) / 10
# Generate int8 weights
w1_fp32 = (torch.rand((E, 2 * N, K), dtype=torch.float32) - 0.5) * 2
w1 = (w1_fp32 * int8_max).clamp(min=int8_min, max=int8_max).to(torch.int8)
w2_fp32 = (torch.rand((E, K, N), dtype=torch.float32) - 0.5) * 2
w2 = (w2_fp32 * int8_max).clamp(min=int8_min, max=int8_max).to(torch.int8)
# Generate scale for each column (per-column quantization)
w1_s = torch.rand(E, 2 * N, device=w1_fp32.device) * factor_for_scale
w2_s = torch.rand(E, K, device=w2_fp32.device) * factor_for_scale
score = torch.randn((M, E), dtype=dtype)
ref_out = torch_w8a8_per_column_moe(a, w1, w2, w1_s, w2_s, score, topk)
out = fused_moe(
a,
w1,
w2,
score,
topk,
renormalize=False,
use_int8_w8a8=True, # Using int8-w8a8
per_channel_quant=True,
w1_scale=w1_s,
w2_scale=w2_s,
block_shape=None, # Not using block quantization
)
# Check results
rel_diff = (torch.mean(
torch.abs(out.to(torch.float32) - ref_out.to(torch.float32))) /
torch.mean(torch.abs(ref_out.to(torch.float32))))
assert rel_diff < 0.05