39 lines
1.5 KiB
Python
39 lines
1.5 KiB
Python
# SPDX-License-Identifier: Apache-2.0
|
|
|
|
import gguf
|
|
import pytest
|
|
import torch
|
|
|
|
from tests.kernels.utils import opcheck
|
|
from vllm import _custom_ops as ops # noqa: F401
|
|
|
|
|
|
@pytest.mark.parametrize("quant_type", [12])
|
|
def test_ggml_opcheck(quant_type):
|
|
block_size, type_size = gguf.GGML_QUANT_SIZES[quant_type]
|
|
shape = [256, 1152]
|
|
qweight = torch.randint(0, 100, shape, device='cuda', dtype=torch.uint8)
|
|
m = qweight.shape[0]
|
|
n = qweight.shape[1] // type_size * block_size
|
|
opcheck(torch.ops._C.ggml_dequantize,
|
|
(qweight, quant_type, m, n, torch.float16))
|
|
|
|
x = torch.rand((m, 512), device='cuda', dtype=torch.float16)
|
|
opcheck(torch.ops._C.ggml_mul_mat_a8,
|
|
(qweight, x, quant_type, qweight.shape[0]))
|
|
opcheck(torch.ops._C.ggml_mul_mat_vec_a8,
|
|
(qweight, x, quant_type, qweight.shape[0]))
|
|
|
|
shape = [256, 1024, 336]
|
|
qweight = torch.randint(0, 100, shape, device='cuda', dtype=torch.uint8)
|
|
x = torch.rand((1, 1024), device='cuda', dtype=torch.float16)
|
|
sorted_token_ids = torch.arange(776, device='cuda')
|
|
expert_ids = torch.randint(0, 256, (194, ), device='cuda')
|
|
num_tokens_post_padded = torch.tensor([1],
|
|
dtype=torch.int64,
|
|
device='cuda')
|
|
|
|
opcheck(torch.ops._C.ggml_moe_a8,
|
|
(x, qweight, sorted_token_ids, expert_ids, num_tokens_post_padded,
|
|
quant_type, qweight.shape[0], 1, x.shape[0]))
|